[1] D. Yan, Y.T. Zhao, S. Zhang, X.F. Wang, X. Ning, Robustly wettability-switchable polylactic acid nanofibrous membranes bearing CO2-responsive trigger and emulsion breaker for versatile oil-water separation, Chem. Eng. J. 493 (2024) 152679. [2] Q.D. Zha, Y.K. Yao, Z.Z. Yin, Y.T. Deng, Z.H. Li, Y. Xie, Y.H. Chen, C.G. Yang, Y.D. Luo, M.S. Xue, Facile construction of multifunctional 3D smart MOF-based polyurethane sponges with photocatalytic ability for efficient separation of oil-in-water emulsions and co-existing organic pollutant, Chem. Eng. J. 490 (2024) 151747. [3] J. Yan, J.Q. Huang, F.F. Pei, T. Bai, Y. Chen, D. Wang, W.L. Cheng, G.P. Han, Biomimetic dendritic-networks-inspired oil-water separation fiber membrane based on TBAC and CNC/PVDF porous nanostructures, Chem. Eng. J. 492 (2024) 152307. [4] J.T. Hu, L.S. Gui, M.N. Zhu, K.L. Liu, Y. Chen, X.P. Wang, J. Lin, Smart Janus membrane for on-demand separation of oil, bacteria, dye, and metal ions from complex wastewater, Chem. Eng. Sci. 253 (2022) 117586. [5] M. Shakiba, M. Abdouss, S. Mazinani, M. Reza Kalaee, Super-hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic-assisted PANI in situ polymerization for highly efficient gravity-driven oil/water separation, Sep. Purif. Technol. 309 (2023) 123032. [6] A. Elhemmali, S. Anwar, Y.H. Zhang, J. Shirokoff, A comparison of oil-water separation by gravity and electrolysis separation process, Sep. Sci. Technol. 56 (2) (2021) 359-373. [7] C.L. Chen, D. Weng, A. Mahmood, S. Chen, J.D. Wang, Separation mechanism and construction of surfaces with special wettability for oil/water separation, ACS Appl. Mater. Interfaces 11 (11) (2019) 11006-11027. [8] Q. Li, J.X. Gao, S.B. Lu, H.W. Zhu, J.L. Liu, Z.B. Wang, Numerical studies on dynamic and oil-water separation characteristics in cyclonic flotation column, Chem. Eng. Res. Des. 196 (2023) 332-341. [9] X.H. Li, X.K. Yan, J. Li, L.J. Wang, H.J. Zhang, Y.J. Cao, Effect of sieve plate packing on bubble size distribution in a cyclonic flotation column, Chem. Eng. Process. Process. Intensif. 168 (2021) 108554. [10] L.Y. Wang, M.M. Liu, Y.L. Wu, H.Y. Zheng, Asymmetrically superwetting Janus membrane constructed by laser-induced graphene (LIG) for on-demand oil-water separation and electrothermal anti-/ de-icing, Chem. Eng. J. 488 (2024) 150862. [11] T.T. Fan, J.L. Miao, Z.H. Li, B.W. Cheng, Bio-inspired robust superhydrophobic-superoleophilic polyphenylene sulfide membrane for efficient oil/water separation under highly acidic or alkaline conditions, J. Hazard. Mater. 373 (2019) 11-22. [12] W. Liu, B. Xiao, G.L. Yang, Y.L. Bi, F.S. Chen, Rapid salt-assisted microwave demulsification of oil-rich emulsion obtained by aqueous enzymatic extraction of peanut seeds, Eur. J. Lipid Sci. Technol. 122 (2) (2020) 1900120. [13] M.M. Abdulredha, S.A. Hussain, L.C. Abdullah, Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods, J. Petrol. Sci. Eng. 184 (2020) 106463. [14] M.L. Liu, J.Q. Chen, X.L. Cai, Y.H. Han, S. Xiong, Oil-water pre-separation with a novel axial hydrocyclone, Chin. J. Chem. Eng. 26 (1) (2018) 60-66. [15] R.C. Mao, Y.D. Li, Y.Q. Liu, H.T. Zhu, N. Wang, Q. Yang, H. Lu, Separation characters of an axial-flow hydrocyclone with oil collecting pipe, Sep. Purif. Technol. 305 (2023) 122139. [16] J.E. Hamza, H.H. Al-Kayiem, T.A. Lemma, Experimental investigation of the separation performance of oil/water mixture by compact conical axial hydrocyclone, Therm. Sci. Eng. Prog. 17 (2020) 100358. [17] X.J. Zhao, K. Zhao, X. Zhang, Y. Gao, H. Liu, Structure optimization and performance evaluation of downhole oil-water separation tools: A novel hydrocyclone, J. Energy Resour. Technol. 146 (2) (2024) 023001. [18] J.Y. Tian, H.L. Wang, W.J. Lv, Y. Huang, P.B. Fu, J.P. Li, Y. Liu, Enhancement of pollutants hydrocyclone separation by adjusting back pressure ratio and pressure drop ratio, Sep. Purif. Technol. 240 (2020) 116604. [19] J.Y. Tian, L. Ni, T. Song, J.N. Zhao, CFD simulation of hydrocyclone-separation performance influenced by reflux device and different vortex-finder lengths, Sep. Purif. Technol. 233 (2020) 116013. [20] J. Kou, Z.M. Jiang, Y.Y. Cong, Separation characteristics of an axial hydrocyclone separator, Processes 9 (12) (2021) 2288. [21] Y. Gao, H. Liu, J.Q. Yu, X.J. Zhao, G. Cao, Q.H. Yang, D.L. Jia, L.C. Zheng, Design and analysis of an axial center-piercing hydrocyclone, Energies 16 (19) (2023) 6800. [22] S. Zhang, L.X. Zhao, L.D. Zhou, L. Liu, M.H. Jiang, Numerical and experimental study on enhanced oil-water separation performance using hydrocyclone coupled with particles, Phys. Fluids 35 (11) (2023) 113331. [23] L. Xing, M.H. Jiang, L.X. Zhao, J.M. Gao, L. Liu, Design and analysis of de-oiling coalescence hydrocyclone, Sep. Sci. Technol. 57 (5) (2022) 749-767. [24] L. Liu, L.X. Zhao, X. Yang, Y.H. Wang, B.R. Xu, B. Liang, Innovative design and study of an oil-water coupling separation magnetic hydrocyclone, Sep. Purif. Technol. 213 (2019) 389-400. [25] H.F. Gong, W.L. Li, X.M. Zhang, Y. Peng, B. Yu, Y. Mou, Simulation of the coalescence and breakup of water-in-oil emulsion in a separation device strengthened by coupling electric and swirling centrifugal fields, Sep. Purif. Technol. 238 (2020) 116397. [26] C. Huo, L. Chen, B. Yu, H.H. Zhang, Y. Peng, Role of droplet size variation on the effect of electric field for the separator coupling electric and swirling fields, Chem. Eng. Sci. 282 (2023) 119266. [27] R. Raesi, R. Maddahian, Numerical investigation of air-injected deoiling hydrocyclones using population balance model, Chem. Eng. Sci. 248 (2022) 117103. [28] A. Krasinski, L. Soltan, J. Kacprzynska-Golacka, Effect of fiber surface modifications on the coalescence performance of polybutylene terephthalate filter media applied for the water removal from the diesel fuel, Sep. Purif. Technol. 236 (2020) 116254. [29] J. Dai, X.Y. Yang, B.J. Wang, Z.W. Chen, Z.J. Lu, Z.S. Bai, Efficient removal of acid from sulfuric acid alkylation reaction products by fiber coalescence technique: Lab-scale and industrial experiments, J. Clean. Prod. 276 (2020) 124096. [30] H. Lu, Z.C. Pan, H.L. Wang, Y.Q. Liu, P.Y. Dai, Q. Yang, Fiber coalescence treatment of oily wastewater: A new theory and application, J. Hazard. Mater. 412 (2021) 125188. [31] Y. Zhang, S.L. Yan, X.Y. Yang, Z.S. Bai, Hydrodynamics and morphologies of droplets coalescence on fiber, AIChE J. 68 (7) (2022) e17673. [32] Y. Zhang, S.L. Yan, Z.S. Bai, Effect of salt addition on the coalescence process of droplets on fiber, Chem. Eng. Sci. 274 (2023) 118628. [33] L. Zhang, Z.J. Lu, Z.S. Bai, Flow state transition and hydrodynamic characteristics of droplets on fiber in liquid phase environment, Sep. Purif. Technol. 327 (2023) 124861. [34] W.J. Lv, Z.H. Dang, Y. He, Y.L. Chang, S.H. Ma, B. Liu, L.X. Gao, L. Ma, UU-type parallel mini-hydrocyclone group for oil-water separation in methanol-to-olefin industrial wastewater, Chem. Eng. Process. Process. Intensif. 149 (2020) 107846. [35] Q.L. Liu, S. Liu, Y.D. Li, Y.Q. Liu, N. Wang, Q. Yang, H. Lu, Microbubble-based process for the enhancement of microfine and heavy oil droplets swirl separation in axial inlet hydrocyclone, Sep. Purif. Technol. 332 (2024) 125642. |