[1] F. Garcia-Sanchez, S. Simon-Grao, J.J. Martinez-Nicolas, M. Alfosea-Simon, C.G. Liu, C. Chatzissavvidis, J.G. Perez-Perez, J.M. Camara-Zapata, Multiple stresses occurring with boron toxicity and deficiency in plants, J. Hazard. Mater. 397 (2020) 122713. [2] I. Uluisik, H.C. Karakaya, A. Koc, The importance of boron in biological systems, J. Trace Elem. Med. Biol. 45 (2018) 156-162. [3] A. Yagmur Goren, Y.K. Recepoglu, A. Karagunduz, A. Khataee, Y. Yoon, A review of boron removal from aqueous solution using carbon-based materials: An assessment of health risks, Chemosphere 293 (2022) 133587. [4] S. Akdag, R. Keyikoglu, A. Karagunduz, B. Keskinler, A. Khataee, Y. Yoon, Recent advances in boron species removal and recovery using layered double hydroxides, Appl. Clay Sci. 233 (2023) 106814. [5] N.B. Darwish, V. Kochkodan, N. Hilal, Boron removal from water with fractionized Amberlite IRA743 resin, Desalination, 370 (2015) 1-6. [6] Z.J. Lesnikowski, Challenges and opportunities for the application of boron clusters in drug design, J. Med. Chem. 59(17) (2016) 7738-7758. [7] J.M. Wang, L.Z. Zhang, L.F. Wang, W.W. Lei, Z.S. Wu, Two-dimensional boron nitride for electronics and energy applications, Energy Environ. Mater. 5(1) (2022) 10-44. [8] R.X. Li, J.J. Zhang, J.X. Guo, Y. Xu, K.Y. Duan, J.R. Zheng, H. Wan, Z.W. Yuan, H.Y. Chen, Application of nitroimidazole-carbobane-modified phenylalanine derivatives as dual-target boron carriers in boron neutron capture therapy, Mol. Pharm. 17(1) (2020) 202-211. [9] Z.G. Huang, S.N. Wang, R.D. Dewhurst, N.V. Ignat’ev, M. Finze, H. Braunschweig, Boron: Its role in energy-related processes and applications, Angew. Chem. Int. Ed. 59(23) (2020) 8800-8816. [10] Z.H. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22) (2017) 6746-6763. [11] Y.Z. Chen, J.F. Lyu, Y.M. Wang, T. Chen, Y. Tian, P. Bai, X.H. Guo, Synthesis, characterization, adsorption, and isotopic separation studies of pyrocatechol-modified MCM-41 for efficient boron removal, Ind. Eng. Chem. Res. 58(8) (2019) 3282-3292. [12] E. Guler, C. Kaya, N. Kabay, M. Arda, Boron removal from seawater: State-of-the-art review, Desalination 356 (2015) 85-93. [13] T. Ide, Y. Hirayama, How boron is adsorbed by-glucamine: A density functional theory study, Comput. Theor. Chem. 1150 (2019) 85-90. [14] X.L. Du, J.Q. Meng, R.S. Xu, Q. Shi, Y.F. Zhang, Polyol-grafted polysulfone membranes for boron removal: Effects of the ligand structure, J. Membr. Sci. 476 (2015) 205-215. [15] Z.M. Guan, J.F. Lv, P. Bai, X.H. Guo, Boron removal from aqueous solutions by adsorption: A review, Desalination 383 (2016) 29-37. [16] J.Y. Niu, D.X. Zhang, J.W. Shen, H.Y. Chu, C.Z. Wang, Y.M. Wei, Poly(ethylene imine)-mediated dihydroxy-functionalized resin with enhanced adsorption capacity for the extraction of boron from salt lake brine, J. Environ. Chem. Eng. 12(5) (2024) 113779. [17] Q.L. Luo, M.T. Zeng, X.Y. Wang, H. Huang, X.F. Wang, N. Liu, X.L. Huang, Glycidol-functionalized macroporous polymer for boron removal from aqueous solution, React. Funct. Polym. 150 (2020) 104543. [18] J.F. Lyu, Z. Zeng, N. Zhang, H.X. Liu, P. Bai, X.H. Guo, Pyrocatechol-modified resins for boron recovery from water: Synthesis, adsorption and isotopic separation studies, React. Funct. Polym. 112 (2017) 1-8. [19] L.Q. Shao, C. Sheng, M.X. Lu, Y. Yang, P. Li, Boron continuous recovery from brines by the multicolumn simulated moving bed process with boron chelating resin, J. Water Process. Eng. 53 (2023) 103875. [20] M. Figueira, M. Reig, M.F. de Labastida, J.L. Cortina, C. Valderrama, Boron recovery from desalination seawater brines by selective ion exchange resins, J. Environ. Manage. 314 (2022) 114984. [21] S.I. Bhat, Y. Ahmadi, S. Ahmad, Recent advances in structural modifications of hyperbranched polymers and their applications, Ind. Eng. Chem. Res. 57(32) (2018) 10754-10785. [22] J.Q. Meng, J.J. Cao, R.S. Xu, Z. Wang, R.B. Sun, Hyperbranched grafting enabling simultaneous enhancement of the boric acid uptake and the adsorption rate of a complexing membrane, J. Mater. Chem. A 4(30) (2016) 11656-11665. [23] W. Chen, P. Liu, Facile synthesis of PEGylated dendritic polyurethane as unimolecular micelles for ultrasound-triggered localized drug delivery, Polym. Chem. 13(1) (2022) 80-84. [24] W. Chen, P. Liu, Pegylated dendritic polyurethane as unimolecular micelles for tumor chemotherapy: Effect of molecular architecture, Int. J. Pharm. 616 (2022) 121533. [25] R.M. Crooks, M. Zhao, L. Sun, V. Chechik, L.K. Yeung, Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis, Acc. Chem. Res. 34(3) (2001) 181-190. [26] Y.B. Wang, P. Wu, Y.N. Wang, H. He, L.Z. Huang, Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: State-of-the-art and future prospects, J. Environ. Manage. 345 (2023) 118629. [27] W. Chen, P. Liu, Dendritic polyurethane-based prodrug as unimolecular micelles for precise ultrasound-activated localized drug delivery, Mater. Today Chem. 24 (2022) 100819. [28] N. Bin Darwish, V. Kochkodan, N. Hilal, Microfiltration of micro-sized suspensions of boron-selective resin with PVDF membranes, Desalination 403 (2017) 161-171. [29] M. Tagliabue, A.P. Reverberi, R. Bagatin, Boron removal from water: needs, challenges and perspectives, J. Clean. Prod. 77 (2014) 56-64. [30] J.Y. Lin, N.N.N. Mahasti, Y.H. Huang, Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review, J. Hazard. Mater. 407 (2021) 124401. [31] O. Mutlu-Salmanli, I. Koyuncu, Boron removal and recovery from water and wastewater, Rev. Environ. Sci. Bio/Technol. 21(3) (2022) 635-664. [32] J.F. Lyu, N. Zhang, H.X. Liu, Z. Zeng, J.S. Zhang, P. Bai, X.H. Guo, Adsorptive removal of boron by zeolitic imidazolate framework: Kinetics, isotherms, thermodynamics, mechanism and recycling, Sep. Purif. Technol. 187 (2017) 67-75. [33] Y.P. Tang, T.S. Chung, M. Weber, C. Maletzko, Development of novel diol-functionalized silica particles toward fast and efficient boron removal, Ind. Eng. Chem. Res. 56(40) (2017) 11618-11627. [34] M. Ruiz, C. Tobalina, H. Demey-Cedeno, J.A. Barron-Zambrano, A.M. Sastre, Sorption of boron on calcium alginate gel beads, React. Funct. Polym. 73(4) (2013) 653-657. [35] J.L. Anderson, E.M. Eyring, M.P. Whittaker, Temperature jump rate studies of polyborate formation in aqueous boric acid1, J. Phys. Chem. 68(5) (1964) 1128-1132. [36] T.T. Pan, G. Li, R.J. Li, X.M. Cui, W.D. Zhang, Selective removal of boron from aqueous solutions using ECH@NGM aerogels with excellent hydrophilic and mechanical properties: Performance and response surface methodology analysis, Langmuir, 38 (2022) 14879-14890. [37] N. Kabay, S. Sarp, M. Yuksel, M. Kitis, H. Koseoglu, O. Arar, M. Bryjak, R. Semiat, Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups, Desalination 223 (1-3) (2008) 49-56. [38] L. Sun, J.C. Huang, H.N. Liu, Y.J. Zhang, X.S. Ye, H.F. Zhang, A.G. Wu, Z.J. Wu, Adsorption of boron by CA@KH-550@EPH@NMDG (CKEN) with biomass carbonaceous aerogels as substrate, J. Hazard. Mater. 358 (2018) 10-19. [39] X.P. Liao, B.Y. Wang, Q. Zhang, Synthesis of glycopolymer nanosponges with enhanced adsorption performances for boron removal and water treatment, J. Mater. Chem. A 6(42) (2018) 21193-21206. [40] H.L. Dong, S.Z. Wang, S.H. Niu, X.Y. Sha, Z.Y. Ji, X.M. Wang, X. Zhang, Preparation and application of porous functional polymers for boron removal in seawater desalination by a mild and free-organic solvents process, Desalination 560 (2023) 116658. [41] Q.L. Luo, Y.Q. Wang, L. Li, X.L. Huang, Z.F. Cheng, X.Y. Wang, L. He, Hydrothermal synthesis of hydroxyl terminated polymer boron adsorbents, J. Solid State Chem. 296 (2021) 121977. [42] H. Demey, J. Barron-Zambrano, T. Mhadhbi, H. Miloudi, Z. Yang, M. Ruiz, A.M. Sastre, Boron removal from aqueous solutions by using a novel alginate-based sorbent: Comparison with Al2O3 particles, Polymers 11(9) (2019) 1509. [43] F.Q. Meng, W. Ma, L. Wu, H.X. Hao, L. Xin, Z. Chen, M.Y. Wang, Selective and efficient adsorption of boron (III) from water by 3D porous CQDs/LDHs with oxygen-rich functional groups, J. Taiwan Inst. Chem. Eng. 83 (2018) 192-203. [44] T.T. Zhang, Y. Li, X.D. Zhao, W.H. Li, X.Y. Sun, J.S. Li, R. Lu, A novel recyclable absorption material with boronate affinity, Sep. Purif. Technol. 272 (2021) 118880. [45] T. Song, Q.L. Luo, F.F. Gao, B. Zhao, X.G. Hao, Z. Liu, Adsorption and electro-assisted method removal of boron in aqueous solution by nickel hydroxide, J. Ind. Eng. Chem. 118 (2023) 372-382. [46] T. Chen, Q.F. Wang, J.F. Lyu, P. Bai, X.H. Guo, Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study, Sep. Purif. Technol. 231 (2020) 115930. [47] O. Eljamal, I. Maamoun, S. Alkhudhayri, R. Eljamal, O. Falyouna, K. Tanaka, N. Kozai, Y. Sugihara, Insights into boron removal from water using Mg-Al-LDH: Reaction parameters optimization & 3D-RSM modeling, J. Water Process. Eng. 46 (2022) 102608. [48] P. Kopczynska, T. Calvo-Correas, A. Eceiza, J. Datta, Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling, Eur. Polym. J. 85 (2016) 26-37. [49] X.F. Li, D. Zhang, K.W. Xiang, G.S. Huang, Synthesis of polyborosiloxane and its reversible physical crosslinks, RSC Adv. 4(62) (2014) 32894-32901. [50] P. Li, C. Liu, L. Zhang, S.L. Zheng, Y. Zhang, Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method, Ultrason. Sonochem. 34 (2017) 938-946. [51] X. Zhang, J.W. Wang, S.F. Chen, Z.B. Bao, H.B. Xing, Z.G. Zhang, B.G. Su, Q.W. Yang, Y.W. Yang, Q.L. Ren, A spherical N-methyl-d-glucamine-based hybrid adsorbent for highly efficient adsorption of boric acid from water, Sep. Purif. Technol. 172 (2017) 43-50. [52] M. Jalali, F. Rajabi, F. Ranjbar, The removal of boron from aqueous solutions using natural and chemically modified sorbents, Desalin. Water Treat. 57(18) (2016) 8278-8288. [53] Q.L. Hu, Y.H. Xie, Z.Y. Zhang, Modification of breakthrough models in a continuous-flow fixed-bed column: Mathematical characteristics of breakthrough curves and rate profiles, Sep. Purif. Technol. 238 (2020) 116399. |