[1] X. Liu, X.Y. Zhang, R.E. Zhang, X.D. Yang, M. Shan, Y.Q. Liu, Report on Chinese urban scattered coal management, Energy Foundation, Tsinghua University Research Center of Building Energy Efficiency, Beijing, 2022. [2] M.A. Koondhar, Z. Tan, G.M. Alam, Z.A. Khan, L. Wang, R. Kong, Bioenergy consumption, carbon emissions, and agricultural bioeconomic growth: a systematic approach to carbon neutrality in China, J. Environ. Manage. 296 (2021) 113242. [3] E. Rokni, X.H. Ren, A. Panahi, Y.A. Levendis, Emissions of SO2, NOx, CO2, and HCl from co-firing of coals with raw and torrefied biomass fuels, Fuel 211 (2018) 363-374. [4] X.J. Liao, S.H. Zhang, X.C. Wang, J.N. Shao, X. Zhang, X.H. Wang, H.P. Yang, H.P. Chen, Co-combustion of wheat straw and camphor wood with coal slime: Thermal behaviour, kinetics, and gaseous pollutant emission characteristics, Energy 234 (2021) 121292. [5] X.D. Yang, Z.Y. Luo, X.R. Liu, C.J. Yu, Y.A. Li, Y.C. Ma, Experimental and numerical investigation of the combustion characteristics and NO emission behaviour during the co-combustion of biomass and coal, Fuel 287 (2021) 119383. [6] T. Madhiyanon, P. Sathitruangsak, S. Sungworagarn, T. Udomman, Investigation of rice-straw-ash fouling/slagging and countermeasures using supplementary additives and co-firing with Si-Al-rich coal in a pilot-scale grate-fired combustor, J. Energy Inst. 93 (5) (2020) 1848-1867. [7] S.G. Sahu, N. Chakraborty, P. Sarkar, Coal-biomass co-combustion: an overview, Renew. Sustain. Energy Rev. 39 (2014) 575-586. [8] J.P. Hao, S.Q. Gao, G.F. Sun, J.D. He, Status of coal-fired industrial boilers and development of decoupling combustion technique, Ind. Boil. (4) (2014) 7-11. [9] G. Liuzzo, N. Verdone, M. Bravi, The benefits of flue gas recirculation in waste incineration, Waste Manag. 27 (1) (2007) 106-116. [10] L. Xu, G.B. Zhao, J.M. Gao, Q. Du, J.Y. Luan, L.F. Zhao, Y. Zhang, S.H. Wu, Effect of flue gas recirculation on nitric oxide (NO) emissions during the coal grate-fired process, toxicol environ chem 99 (5-6) (2017) 783-794. [11] Y. Lei, Y. Liu, Y.Q. Niu, S.E. Hui, Research on SNCR/flue gas recycling synergistic denitration technology, Clean Coal Technol. 25(3) (2019) 110-115. (in Chinese). [12] X.C. Yang, Y.F. Liao, Y.Q. Wang, X.F. Chen, X.Q. Ma, Research of coupling technologies on NOx reduction in a municipal solid waste incinerator, Fuel 314 (2022) 122769. [13] J.H. Li, Y.R. Bai, W.L. Song, NOx-suppressed smokeless coal combustion technique, Proceedings of international symposium on clean coal technology, Chin. J. of Pro. Eng. 01 (2001) 95-98. (in Chinese). [14] J.D. He, W.L. Song, S.Q. Gao, L. Dong, M. Barz, J.H. Li, W.G. Lin, Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal, Fuel Process. Technol. 87 (9) (2006) 803-810. [15] H.L. Li, J. Han, N. Zhang, X.H. Liu, J.D. He, W. Du, Effects of high-temperature char layer and pyrolysis gas on NOx reduction in a typical decoupling combustion coal-fired stove, J. Therm. Sci. 28 (1) (2019) 40-50. [16] B. Liang, H.L. Bai, D.R. Bai, X.H. Liu, Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces, Atmos. Pollut. Res. 13 (4) (2022) 101380. [17] J. Han, X.H. Liu, S.W. Hu, N. Zhang, J.J. Wang, B. Liang, Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves, Chin. J. Chem. Eng. 59 (2023) 182-192. [18] L.G. Cai, X. Shang, S.Q. Gao, Y. Wang, L. Dong, G.W. Xu, Low-NOx coal combustion via combining decoupling combustion and gas reburning, Fuel 112 (2013) 695-703. [19] H.M. Wang, L.P. Song, X.H. Yang, Z.P. Liu, X.H. Liu, N. Zhang, J.P. Hao, T. Lan, Application of pre-burning low-NOx combustion technology in industrial coal-fired grate boilers, Coal Proc. Comp. Utilization (6) (2019) 83-87. (in Chinese). [20] L. Dong, S.Q. Gao, W.L. Song, J.H. Li, G.W. Xu, NO reduction in decoupling combustion of biomass and biomass-coal blend, Energy Fuels 23 (1) (2009) 224-228. [21] S. Munir, W. Nimmo, B.M. Gibbs, The effect of air staged, co-combustion of pulverised coal and biomass blends on NOx emissions and combustion efficiency, Fuel 90 (1) (2011) 126-135. [22] B. Liang, X.H. Liu, Decoupling combustion characteristics of biomass pellets and their mixture with bituminous briquettes, Environ. Technol. Innov. 32 (2023) 103275. [23] J. Wang, H.H. Lou, F.L. Yang, F.Q. Cheng, Numerical simulation of a decoupling and re-burning combinative Low-NOx coal grate boiler, J. Clean. Prod. 188 (2018) 977-988. [24] L.D. Smoot, S.C. Hill, H. Xu, NOx control through reburning, Prog. Energy Combust. Sci. 24 (1998) 385-408. [25] P.H. Qiu, S.H. Wu, S.Z. Sun, H. Liu, L.B. Yang, G.Z. Wang, Industrial test on coal re-burning at a 600 MW utility boiler and NOx reduction, Korean J. Chem. Eng. 24 (4) (2007) 683-687. [26] X.H. Liu, Z.N. Han, J. Han, B. Liang, N. Zhang, S.W. Hu, D.R. Bai, G.W. Xu, Principle and technology of low-NOx decoupling combustion based on restructuring reactions, CIESC J. 73(8) (2022) 3355-3368. (in Chinese). [27] S. Onenc, S. Retschitzegger, N. Evic, N. Kienzl, J. Yanik, Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal, Waste Manag. 71 (2018) 192-199. [28] B.Y. Yang, J.M. Gao, L. Xu, J. Xu, Q. Du, F.G. Zhang, L. Chen, G.B. Zhao, S.H. Wu, Effect of temperature and reaction atmosphere on nitric oxide emission during a char grate-fired process in local flue gas recirculation, Can. J. Chem. Eng. 99 (2021) S97-S113. [29] H.L. Du, M. Zhang, Y.L. Zhang, Y.H. Luo, Characteristics of NO reduction by char layer in fixed-bed coal combustion, Energy Sources Part A Recovery Util. Environ. Eff. 39 (10) (2017) 963-970. [30] J.J. Ji, Y.H. Luo, P.Y. Lin, Effects of air distribution and refractory arch design on efficiency of coal fired travelling grate boilers, j energy Inst 80 (4) (2007) 214-222. [31] B. Rajh, C.G. Yin, N. Samec, M. Hribersek, M. Zadravec, Advanced modelling and testing of a 13MWth waste wood-fired grate boiler with recycled flue gas, Energy Convers. Manag. 125 (2016) 230-241. [32] J. Liu, X.Y. Luo, S. Yao, Q.G. Li, W.S. Wang, Influence of flue gas recirculation on the performance of incinerator-waste heat boiler and NOx emission in a 500 t/d waste-to-energy plant, Waste Manag. 105 (2020) 450-456. [33] X.W. Guo, J. Zhang, Z.X. Zhang, Z.S. Yuan, J.J. Fan, B.M. Chen, Test study of new flue gas re-circulation techniques working on NOx removal in chain-stoked boiler, Energ. Eng. 4 (2017) 48-52. (in Chinese). [34] C. Sun, J. Zhang, Z.X. Zhang, X.W. Guo, Impacts of recycled-flue-gas rate on oxygen level and NOx emission, J. Eng. Thermal Energ. Power. 34(5) (2019) 91-96. (in Chinese). [35] J.Y. Luan, J.M. Gao, X.M. Wu, D.W. Shao, Study of the industrial experiment of the influence of the flue gases recycled into sections in a chain grate boiler on the operation and NOx emissions characteristics of the boiler, J. Eng. Thermal Energ. Power. 32(10) (2017) 90-94. (in Chinese). [36] S. Du, J.J. Fan, Z.X. Zhang, X.W. Guo, L.Y. Zhang, Multilayer flue gas recirculation techniques on NOx removal in chain-stoked boiler, Clean Coal Technol. 24 (3) (2018) 103-107. (in Chinese). [37] J. Yanik, G. Duman, O. Karlstrom, A. Brink, NO and SO2 emissions from combustion of raw and torrefied biomasses and their blends with lignite, J. Environ. Manage. 227 (2018) 155-161. [38] Z.N. Han, X. Zeng, C.B. Yao, Y. Wang, G.W. Xu, Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees, Energy Fuels 30 (3) (2016) 1693-1700. |