Chin.J.Chem.Eng. ›› 2013, Vol. 21 ›› Issue (2): 205-215.DOI: 10.1016/S1004-9541(13)60460-7
• REVIEWS • Previous Articles Next Articles
JIANG Hong, MENG Lie, CHEN Rizhi, JIN Wanqin, XING Weihong, XU Nanping
Received:
2012-02-28
Revised:
2012-06-18
Online:
2013-03-13
Published:
2013-02-28
姜红, 孟烈, 陈日志, 金万勤, 邢卫红, 徐南平
通讯作者:
JIN Wanqin, XING Weihong
基金资助:
Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
JIANG Hong, MENG Lie, CHEN Rizhi, JIN Wanqin, XING Weihong, XU Nanping. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts[J]. Chin.J.Chem.Eng., 2013, 21(2): 205-215.
姜红, 孟烈, 陈日志, 金万勤, 邢卫红, 徐南平. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 205-215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/S1004-9541(13)60460-7
1 Hutchings, G.J., “New approaches to rate enhancement in heterogeneous catalysis”, Chem. Commun., 4, 301-306 (1999).2 Lee, S.A., Choo, K.H., Lee, C.H., Lee, H.I., Hyeon, T., Choi, W., Kwon, H.H., “Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment”, Ind. Eng. Chem. Res., 40, 1712-1719 (2001)3 Meng, Y.B., Huang, X., Yang, Q.H., Qian, Y., Kubota, N., Fukunaga, S., “Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane”, Desalination, 181, 121-133 (2005)4 Teunissen, W., De Groot, F.M.F., Geus, J., Stephan, O., Tence, M., Colliex, C., “The structure of carbon encapsulated NiFe nanoparticles”, J. Catal., 204, 169-174 (2001).5 Nunes, S.P., Peinemann, K.V., Membrane Technology in the Chemical Industry, Wiley-VCH, Weinheim, Germany, 229-225 (2006).6 Marcano, J.G.S., Tsitsis, T.T., Catalytic Membranes and Membrane Reactors, Wiley-VCH, Weinheim, Germany, 1-11 (2002). 7 Julbe, A., Farrusseng, D., Guizard, C., “Porous ceramic membranes for catalytic reactors-overview and new ideas”, J. Membr. Sci., 181, 2-20 (2001).8 Collins, J.P., Way, J.D., “Preparation and characterization of a composite palladium-ceramic membrane”, Ind. Eng. Chem. Res., 32, 2006-3013 (1993).9 Dong, X.L., Jin, W.Q., Xu, N.P., Li, K., “Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications”, Chem. Commun., 47, 10886-10902 (2011).10 Dizge, N., Koseoglu-Imer, Y., Karagunduz, A., Keskinler, B., “Effects of cationic polyelectrolyte on filterability and fouling reduction of submerged membrane bioreactor (MBR)”, J. Membr. Sci., 377, 175-181 (2011).11 Ng, K.K., Lin, C.F., Panchangam, S.C., Hong, P.K., Yang, P.Y., “Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater”, Water Res., 45, 4269-4278 (2011).12 Ollis, D.F., “Integrating photocatalysis and membrane technologies for water treatment”, Ann. N. Y. Acad. Sci., 984, 65-84 (2003).13 Lehr, J.H., Keeley, J., Lehr, J., Water Encyclopedia, John Wiley & Sons, Hoboken, New Jersey, 791-797 (2005).14 Augugliaro, V., Litter, M., Palmisano., L., Soria, J., “The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance”, J. Photochem. Photobiol. C, 7, 127-144 (2006).15 Mozia, S., “Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review”, Sep. Purif. Technol., 73, 71-91 (2010).16 Zhong, Z.X., Xing, W.H., Jin, W.Q., Xu, N.P., “Adhesion of nanosized nickel catalysts in the nanocatalysis/UF system”, AIChE J., 53, 1204-1210 (2007).17 Lu, C.J., Chen, R.Z., Xing, W.H., Jin, W.Q., Xu, N.P., “A submerged membrane reactor for continuous phenol hydroxylation over TS-1”, AIChE J., 54, 1842-1849 (2008).18 Li, N.N., Fane, A.G., Ho, W.S.W., Matsuura, T., Advanced Membrane Technology and Applications, Wiley, Hoboken, Canada, 239-268 (2008).19 Chen, R.Z., Du, Y., Wang, Q.Q., Xing, W.H., Jin, W.Q., Xu, N.P., “Effect of catalyst morphology on the performance of submerged nanocatalysis/membrane filtration system”, Ind. Eng. Chem. Res., 48, 6600-6607 (2009).20 Sun, H.L., Chen, R.Z., Xing, W.H., Jin, W.Q., “Application of a submerged ceramic membrane reactor in catalytic hydrogenation of p-nitrophenol”, Membr. Sci. Technol., 28, 59-63 (2008). (in Chinese)21 Tonkovich, A.L.Y., Zilka, J.L., Jimenez, D.M., Roberts, G.L., Cox, J.L., “Experimental investigations of inorganic membrane reactors: A distributed feed approach for particle oxidation reactions”, Chem. Eng. Sci., 51, 789-806 (1996).22 Jiang, H., Meng, L., Chen, R.Z., Jin, W.Q., Xing, W.H., Xu, N.P., “A novel dual-membrane reactor for continuous heterogeneous oxidation catalysis”, Ind. Eng. Chem. Res., 50, 10458-10464 (2011).23 Xu, N.P., Li, W.X., Zhao, Y.J., Xing, W.H., Shi, J., “Theory and method of application-oriented ceramic membranes design (I) simulation of relation between membrane permeability and micro-structure”, J. Chem. Ind. Eng., 54, 1284-1289 (2003). (in Chinese)24 Boakye, E., Vaidyanathan, N., Radovic, L.R., Osseo-Asare, K., “Microemulsion-mediated synthesis of nanosized molybdenum sulfide coal liquefaction catalysts”, ACS Preprints, 37, 298-305 (1992).25 Logar, N.Z., Kaucic, V., “Nanoporous materials: from catalysis and hydrogen storage to wastewater treatment”, Acta Chim. Slov., 53, 117-135 (2006).26 Salavati-Niasari, M., Abdolmohammadi, S., “Host (nanocavity of zeolite-Y)/guest (12- and 14-membered azamacrocyclic Ni (II) complexes) nanocatalyst: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen”, J. Incl. Phenom. Macro., 60, 145-152 (2008).27 Salavati-Niasari, M., “Template synthesis and characterization of cobalt (II) complex nanoparticles entrapped in the zeolite-Y”, J. Incl. Phenom. Macro., 65, 317-327 (2009).28 Salavati-Niasari, M., “Synthesis, characterization and catalytic epoxidation of styrene using molecular oxygen over ‘neat’ and host-guest nanocomposite materials”, J. Mole. Catal. A, 278, 22-28 (2007).29 Clerici, M.G., Ingallina, P., “Epoxidation of lower olefins with hydrogen peroxide and titanium silicate”, J. Catal., 140, 71-83 (1993).30 Yube, K., Furuta, M., Mae, K., “Selectivity oxidation of phenol with hydrogen peroxide using two types of catalytic microreactor”, Catal. Today, 125, 56-63 (2007).31 Sooknoi, T., Chitranuwatkul, V., “Ammoximation of cyclohexanone in acetic acid using titanium silicalite-1: Activity and reaction pathway”, J. Mole. Catal. A, 236, 220-226 (2005).32 Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikawa, S., Haruta, M., “Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation”, J. Catal., 202, 256-267 (2001).33 Avila-Garcia, I., Ramire, C., Hallen Lopez, J.M., “Electrocatalytic activity of nanosized Pt alloys in the methanol oxidation reaction”, J. Alloys Comp., 495, 462-465 (2010).34 Makhubela, B.C.E., Jardine, A., Smith, G.S., “Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki-Miyaura and Heck cross-couping reactions”, Appl. Catal. A-Gen., 393, 231-241 (2011).35 Harb, M., Rabilloud F., Simon, D., “Structural, electronic, magnetic and optical properties of icosahedral silver-nickel nanoclusters”, Phys. Chem. Chem. Phys., 12, 4246-4254 (2010).36 Jr Wells, D.H., Delgass, W.N., Thomson, K.T., “Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study”, J. Am. Chem. Soc., 126, 2956-2962 (2004).37 Shetti, V.N., Srinivas, D., Ratnasamy, P., “Enhancement of chemoselectivity in epoxidation reactions over TS-1 catalysts by alkali and alkaline metal ions”, J. Mole. Catal. A., 210, 171-178 (2004).38 Altmann, J., Ripperger, S., “Particle deposition and layer formation at the crossflow microfiltration”, J. Membr. Sci., 124, 119-128 (1997).39 Chang, D.J., Hwang, S.J., “Unsteady-state permeate flux of crossflow microfiltration”, Sep. Sci. Technol., 29, 1593-1608 (1994).40 Hermia, J., “Constant pressure blocking filtration laws-application to power-law non-newtonian fluids”, Trans. Inst. Chem. Engrs., 60, 183-187 (1982).41 Davis, R.H., Birdsell, S.A., “Hydrodynamic model and experiments for cross-flow microfiltration”, Chem. Eng. Commun., 49, 217-234 (1987).42 Zhao, Y.J., Zhong, J., Li, H., Xu, N.P., Shi, J., “Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles”, J. Membr. Sci., 208, 331-341 (2002).43 Li, W.X., Zhao, Y.J., Liu, F., Xing, W.H., Xu, N.P., Shi, J., “Theory and method of application-oriented ceramic membranes design (II) prediction of effects of membrane structure parameters on microfiltration of particle suspension”, J. Chem. Ind. Eng., 54, 1290-1294 (2003). (in Chinese)44 Wu, H.M., Bu, Z., Chen, R.Z., Xing, W.H., “Experiments and calculation on the separation of TS-1 molecular sieve suspension by ceramic membrane”, J. Nanjing Univ. Technol., 29, 1-4 (2007). (in Chinese)45 Takahashi, T., Higashi, S., Kai, T., Kimura, H., Masumoto, T., “Benzene hydrogenation activity of nickel catalysts prepared from amorphous Ni-Zr alloys”, Catal. Lett., 26, 401-409 (1994).46 Gao, J.Z., Guan, F., Zhao, Y.C., Yang, W., Ma, Y.J., Lu, X.Q., Hou, J.G., Kang, J.W., “Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity”, Mater. Chem. Phy., 71, 215-219 (2001).47 Du, Y., Chen, H.L., Chen, R.Z., Xu, N.P., “Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts”, Appl. Catal. A., 277, 259-264 (2004).48 Zhong, Z.X., Chen, R.Z., Xing, W.H., Xu, N.P., “Recovery of nanometer nickel catalyst with ceramic membrane”, J. Chem. Ind. Eng., 57, 849-852 (2006). (in Chinese)49 Zhong, Z.X., Li, W.X., Xing, W.H., Xu, N.P., “Crossflow filtration of nanosized catalysts suspension using ceramic membranes”, Sep. Purif. Technol., 76, 223-230 (2011).50 Zhong, Z.X., Xing, W.H., Liu, X., Jin, W.Q., Xu, N.P., “Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts”, J. Membr. Sci., 301, 67-75 (2007).51 Zhong, Z.X., Liu, X., Chen, R.Z., Xing, W.H., Xu, N.P., “Adding microsized silica particles to the catalysis/ultrafiltration system: catalyst dissolution inhibition and flux enhancement”, Ind. Eng. Chem. Res., 48, 4933-4938 (2009).52 Chen, R.Z., Bu, Z., Li, Z.H., Zhong, Z.X., Jin, W.Q., Xing, W.H., “Scouring-ball effects of microsized silica particles on operation stability of the membrane reactor for acetone ammoximation over TS-1”, Chem. Eng. J., 156, 418-422 (2010).53 Li, Z.H., Chen, R.Z., Xing, W.H., Jin, W.Q., Xu, N.P., “Continuous acetone ammoximation over TS-1 in a tubular membrane reactor”, Ind. Eng. Chem. Res., 49, 6309-6316 (2010).54 Gui, P., Huang, X., Chen, Y., Qian, Y., “Effect of operational parameters on sludge accumulation on membrane surfaces in a submerged membrane bioreactor”, Desalination, 151, 185-194 (2003).55 Tsai, H.H., Ravindran, V., Pirbazari, M., “Model for predicting the performance of membrane bioadsorber reactor process in water treatment applications”, Chem. Eng. Sci., 60, 5620-5636 (2005).56 Abo-Ghandera, N.S., Gracea, J.R., Elnashaieb, S.S.E.H., Lim, C.J., “Modeling of a novel membrane reactor to integrate dehydrogenation of ethylbenzene to styrene with hydrogenation of nitrobenzene to aniline”, Chem. Eng. Sci., 63, 1817-1826 (2008).57 Chen, R.Z., Jiang, H., Jin, W.Q., Xu, N.P., “Model study on a submerged catalysis/membrane filtration system for phenol hydroxylation catalyzed by TS-1”, Chin. J. Chem. Eng., 17, 648-653 (2009).58 Lee, S.M., Jung, J.Y., Chung, Y.C., “Novel method for enhancing permeate flux of submerged membrane system in two phase anaerobic reactor”, Water Res., 35, 471-477 (2001).59 Gander, M., Jefferson, B., Judd, S., “Membrane bioreactors for use in small wastewater treatment plants: Membrane materials and effluent quality”, Water Sci. Technol., 41, 205-211 (2000).60 Visvanathan, C., Ben Aim, R., “Studies on colloidal membrane fouling mechanisms in crossflow microfiltration”, J. Membr. Sci., 45, 3-15 (1989).61 Wisniewski, C., Grasmick, A., Cruz, A.L., “Critical particle size in membrane bioreactors case of a denitrifying bacterial suspension”, J. Membr. Sci., 178, 141-150 (2000).62 Choo, K.H., Lee, C.H., “Hydrodynamic behaviour of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor”, Water Res., 32, 3387-3397 (1998).63 Kim, M.J., Kang, O.Y., Rao, B.S., Kim, J.R., Hwang, H.J., Kim, M.H., Yoo, C.K., “Proposing a new fouling index in a membrane bioreactor (MBR) based on mechanistic fouling model”, Desalin. Water Treat., 33, 209-217 (2011).64 Wu, J., He, C.D., Jiang, X.Y., Zhang, M., “Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms”, Desalination, 279, 127-134 (2011).65 Kim, M.J., Kang, O.Y., Rao, B.S., Kim, J.R., Hwang, H.J., Kim, M.H., Yoo, C.K., “Proposing a new fouling index in a membrane bioreactor (MBR) based on mechanistic fouling model”, Desalin. Water Treat., 33, 209-217 (2011).66 Wu, J., He, C.D., Jiang, X.Y., Zhang, M., “Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms”, Desalination, 279, 127-134 (2011).67 Chang, I.S., Le-Clech, P., Jefferson, B., Judd, S., “Membrane fouling in membrane bioreactors for wastewater treatment”, Environ. Eng. Sci., 128, 1018-1029 (2002).68 Le-Clech, P., Chen, V., Fane, A.G., “Fouling in membrane bioreactors used in wastewater treatment”, J. Membr. Sci., 284, 17-53 (2006).69 Zhong, Z.X., Li, D.Y., Liu, X., Xing, W.H., Xu, N.P., “The fouling mechanism of ceramic membranes used for recovering TS-1 catalysts”, Chin. J. Chem. Eng., 17, 53-57 (2009).70 Yiantsios, S.G., Karabelas, A.J., “Detachment of spherical microparticles adhering on flat surfaces by hydrodynamic forces”, J. Colloid Interface Sci., 176, 74-85 (1995).71 Liikanen, R., Yli-Kuivila,J., Laukkanen, R., “Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water”, J. Membr. Sci., 195, 265-276 (2002).72 Zhao, Y.J., Zhong, J., Li, H., Xu, N.P., Shi, J., “Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles”, J. Membr. Sci., 208, 331-341 (2002).73 Zhong, J., Huang, R.R., “Cleaning of ceramic membranes used to washing the nanometer TiO2 powder”, Desalination, 200, 64-65 (2006).74 Baker, R.W., Membrane Technology and Applications, John Wiley & Sons, Chichester, England, 237-272 (2004).75 Vaidya, M.J., Kulkarni, S.M., Chaudhari, R.V., “Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol”, Org. Process Res. Dev., 7, 202-208 (2003). |
[1] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[2] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[3] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[4] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[5] | Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess. Fe3O4-carbon spheres core–shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 75-85. |
[6] | Guoxiao Cai, Wei Xiong, Susu Zhou, Pingle Liu, Yang Lv, Fang Hao, Hean Luo, ChangYi Kong. A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 199-215. |
[7] | Jian Song, Claudia Li, Shao Zhang, Xiuxia Meng, Bo Meng, Jaka Sunarso. Catalyst-modified perovskite hollow fiber membrane for oxidative coupling of methane [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 412-419. |
[8] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
[9] | Zhibin Deng, Xing Ge, Wenting Zhang, Shizhong Luo, Jun Shen, Fangli Jing, Wei Chu. Oxidative dehydrogenation of ethane with carbon dioxide over silica molecular sieves supported chromium oxides: Pore size effect [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 77-86. |
[10] | Huanhao Chen, Yibing Mu, Shanshan Xu, Shaojun Xu, Christopher Hardacre, Xiaolei Fan. Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2010-2021. |
[11] | Tao Yang, Fen Liu, Houfeng Xiong, Qiyong Yang, Fushan Chen, Changchao Zhan. Fouling process and anti-fouling mechanisms of dynamic membrane assisted by photocatalytic oxidation under sub-critical fluxes [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1798-1806. |
[12] | Fushan Chen, Songlin Zhao, Tao Yang, Taotao Jiang, Jun Ni, Houfeng Xiong, Qunfeng Zhang, Xiaonian Li. Controllable synthesis of novel nanoporous manganese oxide catalysts for the direct synthesis of imines from alcohols and amines [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2438-2446. |
[13] | Hong Wang, Xin Wei, Yujun Zhang, Ronghua Ma, Zhen Yin, Jianxin Li. Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnOx/Ti membrane electrode for alcohol oxidation [J]. Chin.J.Chem.Eng., 2019, 27(1): 150-156. |
[14] | Xin Wei, Hong Wang, Zhen Yin, Saood Qaseem, Jianxin Li. Tubular electrocatalytic membrane reactor for alcohol oxidation: CFD simulation and experiment [J]. , 2017, 25(1): 18-25. |
[15] | Masoud Hasany, Mohammad Malakootikhah, Vahid Rahmanian, Soheila Yaghmaei. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor [J]. Chin.J.Chem.Eng., 2015, 23(8): 1316-1325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||