Chin.J.Chem.Eng. ›› 2013, Vol. 21 ›› Issue (2): 216-226.DOI: 10.1016/S1004-9541(13)60461-9
• REVIEWS • Previous Articles
GAO Minjie, SHI Zhongping
Received:
2012-09-18
Revised:
2012-11-05
Online:
2013-03-13
Published:
2013-02-28
高敏杰, 史仲平
通讯作者:
SHI Zhongping
基金资助:
Supported by the Key Agricultral Technology Program of Shanghai Science & Technology Committee (073919108) and Major State Basic Research Development Program of China (2007CB714303).
GAO Minjie, SHI Zhongping. Process Control and Optimization for Heterologous Protein Production by Methylotrophic Pichia pastoris[J]. Chin.J.Chem.Eng., 2013, 21(2): 216-226.
高敏杰, 史仲平. Process Control and Optimization for Heterologous Protein Production by Methylotrophic Pichia pastoris[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 216-226.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/S1004-9541(13)60461-9
1 Cereghino, G.P., Cereghino, J.L., Ilgen, C., Cregg, J.M., “Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris”, Curr. Opin. Biotechnol., 13, 329-332 (2002).2 Macauley-Patrick, S., Fazenda, M.L., McNeil, B., Harvey, L.M., “Heterologous protein production using the Pichia pastoris expression system”, Yeast, 22, 249-270 (2005).3 Cereghino, J.L., Cregg, J.M., “Heterologous protein expression in the methylotrophic yeast Pichia pastoris”, FEMS Microbiol. Rev., 24, 45-66 (2000).4 Hellwig, S., Emde, F., Raven, N.P.G., Henke, M., Logt, P.V.D., Fischer, R., “Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations”, Biotechnol. Bioeng., 74, 344-352 (2001).5 Acik, E., “Effects of carbon sources and feeding strategies on human growth hormone production by metabolically engineered Pichia pastoris”, Msc. Thesis, Middle East Technical Univ. Ankara, Turkey (2009).6 Jungo, C., Marison, I., Stockar, U.V., “Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures”, J. Biotechnol., 130, 236-246 (2007).7 Baumann, K., Maurer, M., Dragosits, M., Cos, O., Ferrer, P., Mattanovich D., “Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins”, Biotechnol. Bioeng., 100, 177-183 (2008).8 Cregg, J.M., Pichia Protocols, Humana Press, New Jersey, 40-65 (2007).9 Hang, H.F., Ye, X.H., Guo, M.J., Chu, J., Zhuang, Y.P., Zhang, M., Zhang, S.L., “A simple fermentation strategy for high-level production of recombinant phytase by Pichia pastoris using glucose as the growth substrate”, Enzyme Microb. Technol., 44, 185-188 (2009).10 Chauhan, A.K., Arora, D., Khanna, N., “A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris”, Process Biochem., 34, 139-145 (1999).11 Choi, D.B., Park, E.Y., “Enhanced production of mouse a-amylase by feeding combined nitrogen and carbon sources in fed-batch culture of recombinant Pichia pastoris”, Process Biochem., 41, 390-397 (2006).12 Zhang, T., Gong, F., Peng, Y., Chi, Z.M., “Optimization for high-level expression of the Pichia guilliermondii recombinant inulinase in Pichia pastoris and characterization of the recombinant inulinase”, Process Biochem., 44, 1335-1339 (2009).13 Khatri, N.K., Hoffmann, F., “Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris”, Biotechnol. Bioeng., 93, 871-879 (2006).14 Nakano, A., Lee, C.Y., Yoshida, A., Matsumoto, T., Shiomi, N., Katoh, S., “Effects of methanol feeding methods on chimeric α-amylase expression in continuous culture of Pichia pastoris”, J. Biosci. Bioeng., 101, 227-231 (2006).15 Potvin, G., Ahmad, A., Zhang, Z., “Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review”, Biochem. Eng. J., 64, 91-105 (2012).16 Jahic, M., Rotticci-Mulder, J.C., Martinelle, M., Hult, K., Enfors, S.O., “Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein”, Bioprocess Biosyst. Eng., 24, 385-393 (2002).17 Lee, C.Y., Lee, S.J., Jung, K.H., Katoh, S., Lee, E.K., “High dissolved oxygen tension enhances heterologous protein expression by recombinant Pichia pastoris”, Process Biochem., 38, 1147-1154 (2003).18 Zhao, H.L., Xue, C., Wang, Y., Yao, X.Q., Liu, Z.M., “Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization”, Appl. Microbiol. Biotechnol., 81, 235-241 (2008).19 Jahic, M., Wallberg, F., Bollok, M., Garcia, P., Enfors, S., “Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures”, Microb. Cell Fact., 2, 6 (2003).20 Dragosits, M., Stadlmann, J., Albiol, J., Baumann, K., Maurer, M., Gasser, B., Sauer, M., Altmann, F., Ferrer, P., Mattanovich, D., “The effect of temperature on the proteome of recombinant Pichia pastoris”, J. Proteome Res., 8, 1380-1392 (2009).21 Wang, Y., Wang, Z.H., Xu, Q.L., Du, G.C., Hua, Z.Z., Liu, L.M., Li, J.H., Chen, J., “Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris”, Process Biochem., 44, 949-954 (2009).22 Inan, M., Chiruvolu, V., Eskridge, K.M., Vlasuk, G.P., Dickerson, K., Brown, S., “Optimization of temperature-glycerol-pH conditions for a fed-batch fermentation process for recombinant hookworm (Ancylostoma caninum) anticoagulant peptide (AcAP-5) production by Pichia pastoris”, Enzyme Microb. Tech., 24, 438-445 (1999).23 Soyaslan, E.?., Çal?k, P., “Enhanced recombinant human erythropoietin production by Pichia pastoris in methanol fed-batch/sorbitol batch fermentation through pH optimization”, Biochem. Eng. J., 55, 59-65 (2011).24 Çal?k, P., Bayraktar, E., ?nankur, B., Soyaslan, E.?., ?ahin, M., Ta?p?nar, H., Aç?k, E., Y?lmaz, R., Özdamar, T.H., “Influence of pH on recombinant human growth hormone production by Pichia pastoris”, J. Chem. Technol. Biot., 85, 1628-1635 (2010).25 Sibirny, A.A., Ubiyvovk, V.M., Gonchar, M.V., Titorenko, V.I., Voronovsky, A.Y., Kapultsevich, Y.G., Bliznik, K.M., “Reaction of direct formaldehyde oxidation to CO2 are not essential for energy supply of yeast methylotropic growth”, Arch. Microbiol., 154, 566-575 (1990).26 Jin, H., Liu, G.Q., Ye, X.F., Duan, Z.Y., Li, Z., Shi, Z.P., “Enhanced porcine interferon-a production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration”, Biochem. Eng. J., 52, 91-98 (2010).27 Çelik, E., Çal?k, P., “Production of recombinant proteins by yeast cells”, Biotechnol. Adv., 30, 1108-1118 (2012).28 Wu, D., Yu, X.W., Wang, T.C., Wang, R., Xu, Y., “High yield Rhizopus chinenisis prolipase production in Pichia pastoris: impact of methanol concentration”, Biotechnol. Bioprocess Eng., 16, 305-311 (2011).29 Khatri, N.K., Hoffmann, F., “Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris”, Appl. Microbiol. Biotechnol., 72, 492-498 (2006).30 Katakura, Y., Zhang, W., Zhuang, G., Omasa, T., Kishimoto, M., Goto, Y., Suga, K., “Effect of methanol concentration on the production of human β2-glycoprotein I domain V by a recombinant Pichia pastoris: a simple system for the control of methanol concentration using a semiconductor gas sensor”, J. Ferment. Bioeng., 86, 482-487 (1998).31 Trinh, L.B., Phue, J.N., Shiloach, J., “Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris”, Biotechnol. Bioeng., 82, 438-444 (2003).32 Damasceno, L.M., Pla, I., Chang, H.J., Cohen, L., Ritter, G., Old, L.J., Batt, C.A., “An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris”, Protein Expr. Purif., 37, 18-26 (2004).33 Yu, R.S., Dong, S.J., Zhu, Y.M., Jin, H., Gao, M.J., Duan, Z.Y., Zheng, Z.Y., Shi, Z.P., Li, Z., “Effective and stable porcine interferon-a production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis”, Bioprocess Biosyst. Eng., 33, 473-483 (2010).34 Mayson, B.E., Kilburn, D.G., Zamost, B.L., Raymond, C.K., Lesnicki, G.J., “Effects of methanol concentration on expression levels of recombinant protein in fed-batch cultures of Pichia methanolica”, Biotechnol. Bioeng., 81, 291-298 (2003).35 Zhang, W., Inan, M., Meagher, M.M., “Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris”, Biotechnol. Bioprocess Eng., 5, 275-287 (2000).36 Cos, O., Ramón, R., Montesinos, J.L., Valero, F., “Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review”, Microb. Cell Fact., 6, 5-17 (2006).37 [1] Plantz, B.A., Sinha, J., Villarete, L., Nickerson, K.W., Schlegel, V.L., “Pichia pastoris fermentation optimization: energy state and testing a growth-associated model”, Appl. Microbiol. Biotechnol., 72, 297-305 (2006).38 Zhang, J.G., Wang, X.D., Su, E.Z., Fang, G.C., Ren, Y.H., Wei, D.Z., “A new fermentation strategy for S-adenosylmethionine production in recombinant Pichia pastoris”, Biochem. Eng. J., 41, 74-78 (2008).39 Lee, C.Y., Nakano, A., Shiomi, N., Lee, E.K., Katoh, S., “Effects of substrate feed rates on heterologous protein expression by Pichia pastoris in DO-stat fed-batch fermentation”, Enzyme Microb. Tech., 33, 358-365 (2003).40 Wei, C., Zhou, X., Zhang, Y., “Improving intracellular production of recombinant protein in Pichia pastoris using an optimized preinduction glycerol-feeding scheme”, Appl. Microbiol. Biotechnol., 78, 257-264 (2008).41 Bahrami, A., Shojaosadati, S.A., Khalilzadeh, R., Vasheghani Farahani, E., “Two-stage glycerol feeding for enhancement of recombinant hG-CSF production in a fed-batch culture of Pichia pastoris”, Biotechnol. Lett., 30, 1081-1085 (2008).42 Johnson, W., Cord-Ruwish, R., Cooney, M.J., “Industrial control of recombinant E. coli fed-batch culture: new perspective on traditional controlled variables”, Bioprocess Biosyst. Eng., 25, 111-120 (2002).43 Inan, M., Meagher, M.M., “The effect of ethanol and acetate on protein expression in Pichia pastoris”, J. Biosci. Bioeng., 92, 337-341 (2001).44 Woo, S.H., Park, S.H., Lim, H.K., Jung, K.H., “Extended operation of a pressurized 75-L bioreactor for shLkn-1 production by Pichia pastoris using dissolved oxygen profile control”, J. Ind. Microbiol. Biotechnol., 32, 474-480 (2005).45 Duan, S.B., Shi, Z.P., Feng, H.J., Duan, Z.Y., Mao, Z.G., “An on-line adaptive control based on DO/pH measurements and ANN pattern recognition model for fed-batch cultivation”, Biochem. Eng. J., 30, 88-96 (2006).46 Jin, H., Zheng, Z.Y., Gao, M.J., Duan, Z.Y., Shi, Z.P., Wang, Z.X., Jin, J., “Effective induction of phytase in Pichia pastoris fed-batch culture using an ANN pattern recognition model based on-line adaptive control strategy”, Biochem. Eng. J., 37, 26-33 (2007).47 Gao, M.J., Zheng, Z.Y., Wu, J.R., Dong, S.J., Li, Z., Jin, H., Zhan, X.B., Lin, C.C., “Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-α production with an on-line model based glycerol feeding strategy”, Appl. Microbiol. Biotechnol., 93, 1437-1445 (2012). 48 Çelik, E., Çal?k, P., Oliver, S.G., “A structured kinetic model for recombinant protein production by Mut+ strain of Pichia pastoris”, Chem. Eng. Sci., 64, 5028-5035 (2009).49 Cos, O., Ramon, R., Montesinos, J.L., Valero, F., “A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess”, Biotechnol. Bioeng., 95, 145-154 (2006).50 Ohya, T., Ohyama, M., Kobayashi, K., “Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation”, Biotechnol. Bioeng., 90, 876-887 (2005).51 Wang, Y., Wang, Z., Du, G., Hua, Z., Liu, L., Li, J., Chen, J., “Enhancement of alkaline polygalacturonate lyase production in recombinant Pichia pastoris according to the ratio of methanol to cell concentration”, Bioresour. Technol., 100, 1343-1349 (2009).52 Schenk, J., Balazs, K., Jungo, C., Urfer, J., Wegmann, C., Zocchi, A., Marison, I.W., von Stockar, U., “Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut+ strain”, Biotechnol. Bioeng., 99, 368-377 (2008).53 Min, C.K., Lee, J.W., Chung, K.H., Park, H.W., “Control of specific growth rate to enhance the production of a novel disintegrin, saxatilin, in recombinant Pichia pastoris”, J. Biosci. Bioeng., 110, 314-319 (2010).54 Lim, H.K., Choi, S.J., Kim, K.Y., Jung, K.H., “Dissolved-oxygen-stat controlling two variables for methanol induction of rGuamerin in Pichia pastoris and its application to repeated fed-batch”, Appl. Microbiol. Biotechnol., 62, 342-348 (2003).55 Li, Z.M., Ping, X.B., Ye, Q., Huang, X.D., Cao, Z.F., “Production and optimization of recombinant human augmenter of liver regeneration by Pichia pastoris”, Enzyme Microb. Technol., 47, 222-227 (2010).56 Minning, S., Serrano, A., Ferrer, P., Sola, C., Schmid, R.D., Valero, F., “Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris”, J. Biotechnol., 86, 59-70 (2001).57 Almuzara, C., Cos, O., Baeza, M., Gabriel, D., Valero, F., “Methanol determination in Pichia pastoris cultures by flow injection analysis”, Biotechnol. Lett., 24, 413-417 (2002).58 Lee, B., Yurimoto, H., Sakai, Y., Kato, N., “Physiological role of the glutathione-dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii”, Microbiology, 148, 2697-2704 (2002).59 Xie, J.L., Zhou, Q.W., Du, P., Gan, R.B., Ye, Q., “Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production”, Enzyme Microb. Technol., 36, 210-216 (2005).60 Zhang, W., Hywood Potter, K.J., Plantz, B.A., Schlegel, V.L., Smith, L.A., Meagher, M.M., “Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement”, J. Ind. Microbiol. Biotechnol., 30, 210-215 (2003). 61 Brierley, R.A., Bussineau, C., Kosson, R., Melton, A., Siegel, R.S., “Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme”, Ann. NY Acad. Sci., 589, 350-362 (1990).62 Chiruvolu, V., Cregg, J.M., Meagher, M.M., “Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbtach fermentations”, Enzyme Microb. Technol., 21, 277-283 (1997). 63 Jungo, C., Marison, I.W., von Stockar, U., “Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures”, J. Biotechnol., 128, 824-837 (2007).64 Çelik, E., Çal?k, P., Oliver, S.G., “Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol”, Yeast, 26, 473-484 (2009).65 Wang, Z.H., Wang, Y., Zhang, D.X., Li, J.H., Hua, Z.Z., Du, G.C., Chen, J., “Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentations”, Biosource Technol., 101, 1318-1323 (2010).66 Ramón, R., Ferrer, P., Valero, F., “Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris”, J. Biotechnol., 130, 39-46 (2007). 67 Jungo, C., Schenk, J., Pasquier, M.M., Marison, I.W., von Stockar, U., “A quantitative analysis of the benefits of mixed feeds of sorbitol andmethanol for production of recombinant avidin with Pichia pastoris”, J. Biotechnol., 131, 57-66 (2007).68 Boze, H., Laborde, C., Chemardin, P., Fabien, R., Venturin, C., Combarnous, Y., Moulin, G., “High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris”, Process Biochem., 36, 907-913 (2001).69 Arnau, C., Ramon, R., Casas, C., Valero, F., “Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess”, Enzyme Microb. Technol., 46, 494-500 (2010).70 Ren, H.T., Yuan, J.Q., Bellgardt, K.H., “Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance”, J. Biotechnol., 106, 53-68 (2003).71 Çelik, E., Çal?k, P., Oliver, S.G., “Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate”, Biotechnol. Bioeng., 105, 317-329 (2010).72 van der Klei, I.J., Yurimoto, H., Sakai, Y., Veenhuis M., “The significance of peroxisomes in methanol metabolism in methylotrophic yeast”, Biochim. Biophys. Acta., 12, 1453-1462 (2006).73 Lüers, G.H., Advani, R., Wenzel, T., Subramani, S., “The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol”, Yeast, 14, 759-771 (1998). 74 Charoenrat, T., Ketudat-Cairns, M., Stendahl-Andersen, H., Jahic, M., Enfors, S.O., “Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes”, Bioprocess Biosyst. Eng., 27, 399-406 (2005). 75 Schroer, K., Peter Luef, K., Stefan Hartner, F., Glieder, A., Pscheidt, B., “Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation”, Metab. Eng., 12, 8-17 (2010).76 Gao, M.J., Dong, S.J., Yu, R.S., Wu, J.R., Zheng, Z.Y., Shi, Z.P., Zhan, X.B., “Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature”, Korean J. Chem. Eng., 28, 1412-1419 (2011).77 Gao, M.J., “Process control of Pichia pastoris fermentation based on intelligent engineering and metabolic regulation”, Ph. D. Thesis, Jiangnan Univ., Wuxi (2012).78 Gao, M.J., Li, Z., Yu, R.S., Wu, J.R., Zheng, Z.Y., Shi, Z.P. Zhan, X.B., Lin, C.C., “Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift”, Bioprocess Biosyst. Eng., 35, 1125-1136 (2012).79 Varma, A., Boesch, B.W., Palsson, B.O., “Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates”, Appl. Environ. Microbiol., 59, 2465-2473 (1993). |
[1] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
[2] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[3] | Xiaocui Sun, Xue Liu, Guang-Rong Zhao. Separation of salidroside from the fermentation broth of engineered Escherichia coli using macroporous adsorbent resins [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 260-267. |
[4] | Min Wu, Juanjuan Ding, Zhaofeng Zhang, Shengping You, Wei Qi, Rongxin Su, Zhimin He. Kinetic modeling of gamma-aminobutyric acid production by Lactobacillus brevis based on pH-dependent model and rolling correction [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 352-360. |
[5] | Zhaofeng Zhang, Juanjuan Ding, Min Wu, Bochao Liu, Huiwen Song, Shengping You, Wei Qi, Rongxin Su, Zhimin He. Development of an integrated process for the production of high-purity γ-aminobutyric acid from fermentation broth [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 361-368. |
[6] | Youming Jiang, Xiaohan Ye, Tianwen Zheng, Weiliang Dong, Fengxue Xin, Jiangfeng Ma, Min Jiang. Microbial production of L-malate from renewable non-food feedstocks [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 105-111. |
[7] | Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 178-184. |
[8] | Huiyu Li, Ming Gao, Pan Wang, Hongzhi Ma, Ting Liu, Jin Ni, Qunhui Wang, Tien-Chin Chang. Cathode catalyst prepared from bacterial cellulose for ethanol fermentation stillage treatment in microbial fuel cell [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 256-261. |
[9] | Lijuan Zhang, Peng Hu, Jiang Pan, Huilei Yu, Jianhe Xu. Immobilization of trophic anaerobic acetogen for semi-continuous syngas fermentation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 311-316. |
[10] | Inn Shi Tan, Man Kee Lam, Henry Chee Yew Foo, Steven Lim, Keat Teong Lee. Advances of macroalgae biomass for the third generation of bioethanol production [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 502-517. |
[11] | Niphaphat Phukoetphim, Naulchan Khongsay, Pattana Laopaiboon, Lakkana Laopaiboon. A novel aeration strategy in repeated-batch fermentation for efficient ethanol production from sweet sorghum juice [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1651-1658. |
[12] | Senqing Fan, Jingyun Liu, Xiaoyu Tang, Wenguo Wang, Zeyi Xiao, Boya Qiu, Yuyang Wang, Shizhao Jian, Yangmei Qin, Yinan Wang. Process operation performance of PDMS membrane pervaporation coupled with fermentation for efficient bioethanol production [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1339-1347. |
[13] | Yu Mi, Yuan Gao, Daidi Fan, Zhiguang Duan, Rongzhan Fu, Lihua Liang, Wenjiao Xue, Shanshan Wang. Stability improvement of human collagen α1(I) chain using insulin as a fusion partner [J]. Chin.J.Chem.Eng., 2018, 26(12): 2607-2614. |
[14] | Daiana Wischral, Hongxin Fu, Fernando L. Pellegrini Pessoa, Nei Pereira Jr, Shang-Tian Yang. Effective and simple recovery of 1,3-propanediol from a fermented medium by liquid-liquid extraction system with ethanol and K3PO4 [J]. Chin.J.Chem.Eng., 2018, 26(1): 104-108. |
[15] | Ke Wang, Xinchao Yang, Xidong Ren, Jianhua Zhang, Zhonggui Mao. Development of a new cleaner production process for cassava ethanol [J]. , 2017, 25(4): 493-498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||