1 Dagaonkar, M.V., Heeres, H.J., Beenackers, A.A.C.M., Pangarkar, V.G., “The application of fine TiO2 particles for enhanced gas absorption”, Chem. Eng. J., 92 (1-3), 151-159 (2003). 2 Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C., “Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor”, Chem. Eng. J., 96 (1-3), 55-69 (2003). 3 Demmink, J.F., Mehra, A., Beenackers, A.A.C.M., “Gas absorption in the presence of particles showing interfacial affinity: case of fine sulfur precipitates”, Chem. Eng. Sci., 53 (16), 2885-2902 (1998). 4 Kaya, A., Schumpe, A., “Surfactant adsorption rather than ‘shuttle effect’ ?”, Chem. Eng. Sci., 60 (22), 6504-6510 (2005). 5 Shen, S.H, Ma, Y.G., Lu, S.M., Zhu, C.Y., “An unsteady heterogeneous mass transfer model for gas absorption enhanced by dispersed third phase droplets”, Chin. J. Chem. Eng., 17 (4), 602-607 (2009). 6 Rols, J.L., Condoret, J.S., Fonade, C., Goma, G., “Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors”, Biotechnol. Bioeng., 35 (4), 427-435 (1990). 7 Nagy, E., Moser, A., “Three-phase mass transfer: Improved pseudo-homogeneous model”, AIChE J., 41 (1), 23-34 (1995). 8 Brilman, D.W.F., Goldschmidt, M.J.V., Versteeg, G.F., van Swaaij, W.P.M., “Heterogeneous mass transfer models for gas absorption in multiphase systems”, Chem. Eng. Sci., 55 (15), 2793-2812 (2000). 9 Ahn, H.S., Kim, H., Jo, H.J., Kang, S.H., Chang, W.P., Kim, M.H., “Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface”, Int. J. Multiphase Flow, 36 (5), 375-384 (2010). 10 Kumar, S., Prasad, S.K., Banerjee, J., “Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model”, Appl. Math. Model., 34 (3), 573-592 (2010). 11 Li, J., Kleinstreuer, C., “Thermal performance of nanofluid flow in microchannels”, Int. J. Heat Fluid Flow, 29 (4), 1221-1232 (2008). 12 Santra, A.K., Sen, S., Chakraborty, N., “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates”, Int. J. Therm. Sci., 48 (2), 391-400 (2009). 13 Noie, S.H., Zeinal, H.S., Kahani, M., Nowee, S.M., “Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon”, Int. J. Heat Fluid Flow, 30 (4), 700-705 (2009). 14 Krishnamurthy, S., Bhattacharya, P., Phelan, P.E., Prasher, R.S., “Enhanced mass transport in nanofluids”, Nano Lett., 6 (3), 419-423 (2006). 15 Kim, J.K., Jung, J.Y., Kang, Y.T., “The effect of nano-particles on the bubble absorption performanc in a binary nanofluid”, Int. J. Refrig., 29 (1), 22-29 (2006). 16 Kim, J.K., Jung, J.Y., Kang, Y.T., “Mass transfer enhancement of a binary nanofluid for absorption application”, In: The 13th International Heat Conference, Australia, NAN-017 (2006). 17 Olle, B., Bucak, S., Holmes, T.C., Bromberg, L., Hatton, A., Wang, D.I.C., “Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles”, Ind. Eng. Chem. Res., 45 (12), 4355-4363 (2006). 18 Kim, J.K., Jung, J.Y., Kang, Y.T., “Absorption performance enhancement by nanoparticles and chemical sufactants in binary nanofluids”, Int. J. Refrig., 30 (1), 50-57 (2007). 19 Nagy, E., Feczkó, T., Koroknai, B., “Enhancement of oxygen mass transfer rate in the presence of nanosized particles”, Chem. Eng. Sci., 62 (24), 7391-7398 (2007). 20 Prasher, R., Phelan, P.E., Bhattacharya, P., “Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)”, Nanoletters, 6 (7), 1529-1534 (2006a). 21 Prasher, R., Bhattacharya, P., Phelan, P.E., “Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids”, Trans. ASME J. Heat Transfer, 128 (6), 588-595 (2006). 22 Lu, S.M., Ma, Y.G., Zhu, C.Y., Shen, S.H., “The enhancement of CO2 chemical absorption by K2CO3 aqueous solution in the presence of activated carbon particles”, Chin. J. Chem. Eng., 15 (6), 842-846 (2007). 23 Vinke, H, Hamersma, P.J, Fortuin, J.M.H., “Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles”, Chem. Eng. Sci., 48 (12), 2197-2210 (1993). 24 Zhang, D., “Study on mechanism and model of gas-liquid mass transfer enhancement by dispersed particles”, Ph.D. Thesis, Tianjin University, China (2006). (in Chinese) 25 Wimmers, O.J., Fortuin, J.M.H., “The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors. II. Determination of the enhancement in a bubbles containing slurry reactor”, Chem. Eng. Sci., 43 (2), 313-319 (1988). 26 Nagy, E., Hadik, P., “Three-phase mass transfer: Effect of the size distribution”, Ind. Eng. Chem. Res., 42 (21), 5363-5372 (2003). 27 Shen, S.H., Ma, Y.G., Zhu, C.Y., Lu, S.M., “Absorption enhancement of carbon dioxide in aqueous activated carbon slurries”, CIESC J., 58 (4), 835-841 (2007). (in Chinese) |