1 Stankiewicz, A.I., Moulijn, J.A., “Process intensification: Transforming chemical engineering”, Chem. Eng. Prog., 96 (1), 22-34 (2000).2 Shao, N., Gavriilidis, A., Angeli, P., “Mass transfer during Taylor flow in microchannels with and without chemical reaction”, Chem. Eng. J., 160 (3), 873-881 (2010).3 Ye, C.B., Chen, G.W., Yuan, Q., “Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor”, Chin. J. Chem. Eng., 20 (1), 111-119 (2012).4 Huang, D., Lu, Y.C., Wang, Y. J., Yang, L., Luo, G.S., “Intensification of catalytic oxidation with a T-junction microchannel reactor for deep desulfurization”, Ind. Eng. Chem. Res., 47 (4), 3870-3875 (2008).5 Chasanis, P., Brass, M., Kenig, E.Y., “Investigation of multicomponent mass transfer in liquid-liquid extraction systems at microscale”, Int. J. Heat Mass Tran., 53 (19-20), 3758-3763 (2010).6 Ma, Y.G., Ji, X.Y., Wang, D.J., Fu, T.T., Zhu, C.Y., “Measurement and correlation of pressure drop for gas-liquid two-phase flow in rectangular microchannels”, Chin. J. Chem. Eng., 18 (6), 940-947 (2010).7 Niu, H.N., Pan, L.W., Su, H.J., Wang, S.D., “Flow pattern, pressure drop, and mass transfer in a gas-liquid concurrent two-phase flow microchannel reactor”, Ind. Eng. Chem. Res., 48 (3), 1621-1628 (2009).8 Yue, J., Chen, G.W., Yuan, Q., Luo, L.G., Gonthierb, Y., “Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel”, Chem. Eng. Sci., 62 (7), 2096-2108 (2007).9 van Baten, J.M., Krishna, R., “CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries”, Chem. Eng. Sci., 59 (12), 2535-2545 (2004).10 Irandoust, S., Ertle, S., Andersson, B., “Gas-liquid mass-transfer in Taylor flow through a capillary”, Can. J. Chem. Eng., 70 (1), 115-119 (1992).11 Kreutzer, M.T., “Hydrodynamics of Taylor flow in capillaries and monolith reactors”, Ph.D. Thesis, Delft University of Technology, Delft, Netherlands (2003).12 Beenackers, A.A.C.M., van Swaaij, W.P.M., “Mass transfer in gas-liquid slurry reactors: A critical review”, Chem. Eng. Sci., 48 (18), 3109-3139 (1993).13 Ramachandran, P.A., “Gas absorption in slurries containing fine particles: review of models and recent advances”, Ind. Eng. Chem. Res., 46 (10), 3137-3152 (2007).14 Dagaonkar, M.V., Heeres, H.J., Beenackers, A.A.C.M., Pangarkar, V.G., “The application of fine TiO2 particles for enhanced gas absorption”, Chem. Eng. J., 92 (1-3), 151-159 (2003).15 Nagy, E., Feczko, T., Koroknai, B., “Enhancement of oxygen mass transfer rate in the presence of nanosized particles”, Chem. Eng. Sci., 62 (24), 7391-7398 (2007).16 Demmink, J.F., Mehra, A., Beenackerss, A.A.C.M., “Gas absorption in the presence of particles showing interfacial affinity: case of fine sulfur precipitates”, Chem. Eng. Sci., 53 (16), 2885-2902 (1998).17 Kars, R.L., Best, R.J., Drinkenburg, A.A.H., “The sorption of propane in slurries of active carbon in water”, Chem. Eng. J., 17 (2), 201-210 (1979).18 Ufer, A., Mendorf, M., Ghaini, A., Agar, D.W., “Liquid-liquid slug flow capillary microreactor”, Chem. Eng. Technol., 34 (3), 353-360 (2011).19 Thulasidas, T.C., Abrahams, M.A., Cerrot, R.L., “Dispersion during bubble-train flow in capillaries”, Chem. Eng. Sci., 54 (1), 61-76 (1999).20 Brilman, D.W.F., van Swaaij, W.P.M., Versteeg, G.F., “A one-dimensional instationary heterogeneous mass transfer model for gas absorption in multiphase systems”, Chem. Eng. Process., 37 (6), 471-488 (1998).21 Lin, C., Zhou, M., Xu, C.J., “Axisymmetrical two-dimensional heterogeneous mass transfer model for the absorption of gas into liquid-liquid dispersions”, Chem. Eng. Sci., 54 (3), 389-399 (1999).22 Brilman, D.W.F., Goldschmidt, M.J.V., Versteeg, G.F., “Heterogeneous mass transfer models for gas absorption in multiphase systems”, Chem. Eng. Sci., 55 (15), 2793-2812 (2000).23 Qian, D., Lawal, A., “Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel”, Chem. Eng. Sci., 61 (23), 7609-7625 (2006).24 Nicodemo, L., Nicolais, L., Landel, R.F., “Shear rate dependent viscosity of suspensions in newtonian and non-newtonian liquids”, Chem. Eng. Sci., 29 (3), 729-735 (1974).25 Vinke, H., Hamersma, P.J., Fortuin, J.M.H., “Enhancement of gas absorption rate in agitated slurry reactors by gas-absorbing particles adhering to gas bubbles”, Chem. Eng. Sci., 48 (12), 2197-2210 (1993).26 Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C., “Model to describe mass-transfer enhancement by catalyst particles adhering to a gas-liquid interface”, Ind. Eng. Chem. Res., 44 (16), 6123-6140 (2005). |