[1] J.K. Edzwald, J. Haarhoff, Seawater pretreatment for reverse osmosis: Chemistry, contaminants, and coagulation, Water Res. 45 (2011) 5428-5440.[2] W.Z. Yu, J. Gregory, L.C. Campos, Breakage and re-growth of flocs formed by charge neutralization using alum and polyDADMAC, Water Res. 44 (2010) 3959-3965.[3] Y.X. Zhao, B.Y. Gao, H.K. Shon, Y.Wang, J.H. Kim, Q.Y. Yue, The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride (TiCl4), J. Hazard. Mater. 198 (2011) 70-77.[4] R.F. Packham, Some studies of the coagulation of dispersed clays with hydrolyzed salts, J. Colloid Sci. 20 (1965) 81-92.[5] A.W.W. Association, in: R.D. Letterman (Ed.), Water Quality and Treatment: A Handbook of Community Water Supplies, McGraw-Hill, New York, 1999.[6] M. Vepsalainen, M. Pulliainen, M. Sillanpaa, Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC), Sep. Purif. Technol. 99 (2012) 20-27.[7] H. Wang, J. Qi, A.A. Keller, M. Zhu, F. Li, Effects of pH, ionic strength and humic acid on the removal of TiO2 nanoparticles from aqueous phase by coagulation, Colloids Surf. A 450 (2014) 161-165.[8] J.M. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interf. 100 (2003) 475-502.[9] C.R. O'Melia, W. Stumm, Aggregation of silica dispersions by iron (III), J. Colloid Interface Sci. 23 (1967) 437-447.[10] K.J. Farley, D.A. Dzombak, F.M. Morel, A surface precipitation model for the sorption of cations on metal oxides, J. Colloid Interface Sci. 106 (1985) 226-242.[11] S.K. Dentel, Application of the precipitation-charge neutralizationmodel of coagulation, Environ. Sci. Technol. 22 (1988) 825-832.[12] S.K. Dentel, J.M. Gossett, Mechanisms of coagulation with aluminum salts, J. Am. Water Works Assoc. 80 (1988) 187-198.[13] M.M. Benjamin, Adsorption and surface precipitation of metals on amorphous iron oxyhydroxide, Environ. Sci. Technol. 17 (1983) 686-692.[14] W.D. W., The Interactions of Hydrolyzable Metal Ions with Hydrophobic Colloids: A Thesis, Clarkson College of Technology, Potsdam, New York, 1980.[15] C.Q. Ye, D.S.Wang, B.Y. Shi, J.F. Yu, J.H. Qu, M. Edwards, H.X. Tang, Alkalinity effect of coagulation with polyaluminumchlorides: Role of electrostatic patch, Colloids Surf. A 294 (2007) 163-173.[16] X.Wu, X. Ge, D.Wang, H. Tang, Distinct coagulationmechanism andmodel between alum and high Al13-PACl, Colloids Surf. A 305 (2007) 89-96.[17] J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation using aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride, Water Res. 24 (1990) 1519-1526.[18] J. Yu, D.Wang, M. Yan, C. Ye, M. Yang, X. Ge, Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids, Environ. Monit. Assess. 131 (2007) 377-386.[19] Z. Yang, B. Gao, B. Cao, W. Xu, Q. Yue, Effect of OH-/Al3+ ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment, Sep. Purif. Technol. 80 (2011) 59-66.[20] M. Aguilar, J. Saez, M. Llorens, A. Soler, J. Ortuno, Nutrient removal and sludge production in the coagulation-flocculation process, Water Res. 36 (2002) 2910-2919.[21] J. Gregory, V. Dupont, Properties of flocs produced by water treatment coagulants, Water Sci. Technol. 44 (2001) 231-236.[22] C. Hu, H. Liu, J. Qu, D.Wang, J. Ru, Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control, Environ. Sci. Technol. 40 (2006) 325-331.[23] Z. Bi, C. Feng, D.Wang, X. Ge, H. Tang, Transformation of planarMögel Al13 to epsilon Keggin Al13 in dissolution process, Colloids Surf. A 407 (2012) 91-98.[24] H. Zhao, Y. Zhang, H.Wang, Stability and coagulation behavior of solid Al13 purified with an ethanol-acetone fractional precipitation method, Chem. Eng. J. 179 (2011) 203-208.[25] C. Zhao, X.Wang, J. He, Z. Luan, X. Peng, Z. Jia, Preparation and characterization of γ- Al2O3 by polyaluminum chloride with high Al13 content, Chin. J. Chem. Eng. 18 (2010) 333-336.[26] W. Xu, B. Gao, B. Du, Z. Xu, Y. Zhang, D. Wei, Influence of shear force on floc properties and residual aluminum in humic acid treatment by nano-Al13, J. Hazard. Mater. 271 (2014) 1-8.[27] J.L. Lin, C. Huang, B. Dempsey, J.Y. Hu, Fate of hydrolyzed Al species in humic acid coagulation, Water Res. 56 (2014) 314-324.[28] Z. Chen, Z. Luan, J. Fan, Z. Zhang, X. Peng, B. Fan, Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions, Colloids Surf. A 292 (2007) 110-118.[29] Z. Chen, B. Fan, X. Peng, Z. Zhang, J. Fan, Z. Luan, Evaluation of Al30 polynuclear species in polyaluminum solutions as coagulant for water treatment, Chemosphere 64 (2006) 912-918.[30] W. Yang, Z. Qian, B. Lu, J. Zhang, S. Bi, Density functional theory study and kinetic analysis of the formation mechanism of Al30O8(OH)56(H2O)26 18+(Al30) in aqueous solution, Geochim. Cosmochim. Acta 74 (2010) 1220-1229.[31] J. Mertens, B. Casentini, A. Masion, R. Pöthig, B. Wehrli, G. Furrer, Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water, Water Res. 46 (2011) 53-62.[32] I. Popa, G. Papastavrou, M. Borkovec, Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers, Phys. Chem. Chem. Phys. 12 (2010) 4863-4871.[33] D.S. Wang, H.X. Tang, J. Gregory, Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACl: effect of sulfate ion, Environ. Sci. Technol. 36 (2002) 1815-1820.[34] Z. Zhang, Z. Luan, Y. Zhao, J. Cui, Z. Chen, Y. Li, Breakage and regrowth of flocs coagulation with polyaluminum chloride (PACl), Environ. Sci. 28 (2007) 346-351 (in Chinese).[35] Z. Zhang, D. Liu, D. Hu, D. Li, X. Ren, Y. Cheng, Z. Luan, Effects of slow-mixing on the coagulation performance of polyaluminum chloride (PACI), Chin. J. Chem. Eng. 21 (2013) 318-323.[36] J. Lin, C. Huang, C.M. Chin, J.R. Pan, Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patchmechanisms, Water Res. 42 (2008) 4457-4466.[37] R.D. Letterman, S. Vanderbrook, P. Sricharoenchaikit, Electrophoretic mobility measurements in coagulation with aluminum salts, J. Am. Water Works Assoc. 74 (1982) 44-51.[38] Y. Hu, X. Liu, Chemical composition and surface property of kaolins, Miner. Eng. 16 (2003) 1279-1284.[39] H. Hohl, L. Sigg, W. Stumm, Characterization of surface chemical properties of oxides in natural waters, Adv. Chem. Ser. 189 (1980) 1-31.[40] Z.Y. Chen, Z.K. Luan, Z.P. Jia, X. Li, Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions, J. Environ. Manag. 90 (2009) 2831-2840.[41] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem. 92 (1917) 129-168.[42] C. Kan, C. Huang, J.R. Pan, Time requirement for rapid-mixing in coagulation, Colloids Surf. A 203 (2002) 1-9.[43] A. Amirtharajah, K.M. Mills, Rapid-mix design for mechanisms of alum coagulation, J. Am. Water Works Assoc. 74 (1982) 210-216. |