[1] J. Chen, H. Y. Song, C. G. Xia, Z. H. Tang, X. Z. Zhang, Z. Li, E. X. Guo, Process for synthesizing trioxymethylene using ionic liquid. U.S. Patent:US, 7598402 B2, 2009-10-06. [2] C. G. Xia, Z. H. Tang, J. Chen, X. Z. Zhang, Z. Li, E. X. Guo, Method of synthesizing trioxymethylene from formaldehyde by the catalytic action of an ionic liquid. U.S. Patent:US, 7244854 B2, 2007-07-17. [3] A. Curioni, M. Sprik, W. Andreoni, H. Schiffer, J. Hutter, M. Parrinello, Density functional theory-based molecular dynamics simulation of acid-catalyzed chemical reactions in liquid trioxane, J. Am. Chem. Soc. 119(1997) 7218-7229. [4] A. Curioni, W. Andreoni, J. Hutter, H. Schiffer, M. Parrinello, Density-functionaltheory-based molecular dynamics study of 1,3,5-trioxane and 1,3-dioxolane protolysis, J. Am. Chem. Soc. 116(1994) 11251-11255. [5] D.C. Bassett, Solid state polymerization at {00.1} sub-grain boundaries of trioxane, Nature 215(1967) 731-732. [6] J. Mosamoto, K. Hamanaka, K. Yoshida, H. Nagahara, K. Kagawa, T. Iwaisako, H. Komaki, Synthesis of trioxane using Heteropolyacids as catalyst, Angew. Chem. Int. Ed. 39(2000) 2102-2104. [7] H. Benabdallah, D. Olender, Finite element simulation of the wear of polyoxymethylene in pin-on-disc configuration, Wear 261(2006) 1213-1224. [8] R. Luo, X. Zhao, R. Gronner, N. Papke, Low emission polyoxymethylene. U.S. Patent:US, 20130324675 A1, 2013-12-05. [9] M. Haubs, D. Feord, J. K. Kurz, J. Lingnau, Process for producing a cyclic acetal in a heterogeneous reaction system. International Patent:WO, 2013076290 A1, 2013-05-30. [10] T. Grützner, H. Hasse, N. Lang, M. Siegert, E. Ströfer, Development of a newindustrial process for trioxane production, Chem. Eng. Sci. 62(2007) 5613-5620. [11] M. Hirohiso, K-s. Okayama, Processes for producing trioxane. European Patent:EP, 0789024 B1, 2002-02-01. [12] Y.F. Hu, Z.C. Liu, C.M. Xu, X.M. Zhang, The molecular characteristics dominating the solubility of gases in ionic liquids, Chem. Soc. Rev. 40(2011) 3802-3823. [13] A.K. Chakraborti, S.R. Roy, On catalysis by ionic liquids, J. Am. Chem. Soc. 131(2009) 6902-6903. [14] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99(1999) 2071-2083. [15] Z.C. Liu, X.H. Meng, R. Zhang, C.M. Xu, H. Dong, Y.F. Hu, Reaction performance of Isobutane alkylation catalyzed by a composite ionic liquid at a short contact time, AIChE J. 60(2014) 2244-2253. [16] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, R.I. Masel, Ionic liquid-mediated selective conversion of CO2 to CO at lowoverpotentials, Science 334(2011) 643-644. [17] Y. F. Hu, H. Z. Huang, Z. Y. Yang, H. R. Zhang, Chinese Patent:201410663695.1, (2014). [18] C. G. Xia, H. Y. Song, J. Chen, X. Z. Zhang, Z. Li, E. X. Guo, Chinese Patent:CN, 101311154 A, (2007). [19] J. Chen, H. Y. Song, C. G. Xia, Z. H. Tang, Chinese Patent:CN, 102020629 A, (2011). [20] J. Chen, H. Y. Song, C. G. Xia, Z. H. Tang, Chinese Patent:CN, 102020630 A, (2011). [21] J. Chen, H.B. Wang, R. Cheng, Comparison between ionic liquid method and sulfuric acid method of trioxane preparation, Tech. Dev. Chem. Ind. 42(2013) 60-62. [22] The catalyst can also increase the relative volatility of trioxane and water and of trioxane and, as the specific interactions between trioxane and the coexisting ions of the catalyst are considerably smaller than those betweenwater (or HO(CH2O)nH) and these ions due to the lack of the -OH group(s) in the molecular structure of trioxane. [23] J.F. Walker, Formaldehyde, third ed. Reinhold, New York, 1970239. [24] Z.Y. Yang, Y.F. Hu, Z.X. Wang, Y. Sun, C.C. Jiang, Y.F. Chen, Densities and viscosities of the binary and ternary aqueous solutions of pyrrolidone-based ionic liquids at different temperatures and atmospheric pressure, J. Chem. Eng. Data 59(2014) 1094-1104. [25] M. Kosmulski, J. Gustafsson, J.B. Rosenholm, Thermal stability of low temperature ionic liquids revisited, Thermochim. Acta 412(2004) 47-53. [26] W.H. Awad, J.W. Gilman, M. Nyden, R.H. Harris Jr., T.E. Sutto, J. Callahan, P.C. Trulove, H.C. DeLong, D.M. Fox, Thermal degradation studies of alkylimidazolium salts and their application in nanocomposites, Thermochim. Acta 409(2004) 3-11. [27] M.A. Paul, F.A. Long, H0 and related indicator acidity function, Chem. Rev. 67(1957) 1-45. [28] C. Thomazeau, H. Olivier-Bourbigou, L. Magna, S. Luts, B. Gilbert, Determination of an acidic scale in room temperature ionic liquids, J. Am. Chem. Soc. 125(2003) 5264-5265. [29] Q. Wu, M. Wang, Y. Hao, H. Li, Y. Zhao, Q. Jiao, Synthesis of polyoxymethylene dimethyl ethers catalyzed by Brønsted acid ionic liquids with Alkanesulfonic acid groups, Ind. Eng. Chem. Res. 53(2014) 16254-16260. [30] L.Y. Yin, Y.F. Hu, X.M. Zhang, J.G. Qi,W.T. Ma, The salt effect on the yields of trioxane in reaction solution and in distillate, RSC Adv. 5(2015) 37,697-37,702. [31] Y.X. Yu, J.G. Liu, G.H. Gao, Isobaric vapor-liquid equilibria of three aromatic hydrocarbon-tetraethylene glycol binary systems, Fluid Phase Equilib. 157(1999) 299-307. [32] J.D. Li, C.X. Chen, J. Wang, Vapor-liquid equilibrium data and their correlation for binary systems consisting of ethanol, 2-propanol, 1,2-ethanediol and methyl benzoate, Fluid Phase Equilib. 169(2000) 75-84. [33] G.Z. Li, Y.F. Hu, Y.S. Liu, G.L. Li, Y.X. Tang, L.H.Wu, C.F. Shi, K. Xu, Isobaric vapor-liquid equilibrium for the ternary system (formaldehyde +1,3-dioxolane+water) at 101.3 kPa, J. Chem. Eng. Data 58(2013) 2854-2860. |