›› 2017, Vol. 25 ›› Issue (7): 938-946.DOI: 10.1016/j.cjche.2016.12.011
• Separation Science and Engineering • Previous Articles Next Articles
Yesid Tapiero, Julio Sánchez, Bernabé L. Rivas
Received:
2016-08-13
Revised:
2016-12-29
Online:
2017-08-17
Published:
2017-07-28
Supported by:
Yesid Tapiero, Julio Sánchez, Bernabé L. Rivas
通讯作者:
Bernabé L.Rivas,E-mail address:brivas@udec.cl
基金资助:
Yesid Tapiero, Julio Sánchez, Bernabé L. Rivas. Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions[J]. , 2017, 25(7): 938-946.
Yesid Tapiero, Julio Sánchez, Bernabé L. Rivas. Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions[J]. , 2017, 25(7): 938-946.
[1] G.-R.R. Bernardo, R.-M.J. Rene, A.-D.l.T. Ma Catalina, Chromium (Ⅲ) uptake by agrowaste biosorbents:Chemical characterization, sorption-desorption studies, and mechanism, J. Hazard. Mater. 170(2009) 845-854. [2] M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater:A review, Water Air Soil Pollut. 200(2009) 59-77. [3] WHO, Guidelines for Drinking Water Quality, World Health Organization, Genova, 2008. [4] T. Sardohan, E. Kir, A. Gulec, Y. Cengeloglu, Removal of Cr (Ⅲ) and Cr (VI) through the plasma modified and unmodified ion-exchange membranes, Sep. Purif. Technol. 74(2010) 14-20. [5] S. Kalidhasan, A.S.K. Kumar, V. Rajesh, N. Rajesh, The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective, Coord. Chem. Rev. 317(2016) 157-166. [6] R.R. Patterson, S. Fendorf, M. Fendorf, Reduction of hexavalent chromium by amorphous iron sulfide, Environ. Sci. Technol. 31(1997) 2039-2044. [7] D. Park, S.-R. Lim, Y.-S. Yun, J.M. Park, Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction, Chemosphere 70(2007) 298-305. [8] W. Zheng, J. Hu, Z. Han, E. Diesel, Z. Wang, Z. Zheng, C. Ba, J. Langer, J. Economy, Interactions of Cr (VI) with hybrid anion exchange/porous carbon fibers in aqueous solution at natural pH, Chem. Eng. J. 287(2016) 54-61. [9] F. Melak, G. Du Laing, A. Ambelu, E. Alemayehu, Application of freeze desalination for chromium (VI) removal from water, Desalination 377(2016) 23-27. [10] M. Bodzek, Application of membrane techniques for the removal of micropollutants from water and wastewater, Copernican Lett. 6(2015) 24-33. [11] S. Saravanan, K.M.S. Begum, N. Anantharaman, Removal of hexavalent chromium by emulsion liquid membrane technique, J. Univ. Chem. Technol. Metall. 41(2006) 333-342. [12] P. Venkateswaran, K. Palanivelu, Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier, Hydrometallurgy 78(2005) 107-115. [13] A. Bhowal, S. Datta, Studies on transport mechanism of Cr (VI) extraction from an acidic solution using liquid surfactant membranes, J. Membr. Sci. 188(2001) 1-8. [14] A. Tor, Y. Çengeloğlu, M. Ersöv, G. Arslan, Transport of chromium through cationexchange membranes by Donnan dialysis in the presence of some metals of different valences, Desalination 170(2004) 151-159. [15] S. Koter, M. Kultys, B. Gilewicz-Łukasik, I. Koter, Modeling the transport of sulfuric acid and its sulfates (MgSO4, ZnSO4, Na2SO4) through an anion-exchange membrane, Desalination 342(2014) 75-84. [16] J. Mathur, M. Murali, M.B. Krishna, V. Ramachandhran, M. Hanra, B. Misra, Diffusion dialysis aided electrodialysis process for concentration of radionuclides in acid medium, J. Radioanal. Nucl. Chem. 232(1998) 237-240. [17] A.A. Said, M. Amara, H. Kerdjoudj, The effect of thiourea as a complexing agent on the separation of metallic ions through cation exchange membranes by Donnan dialysis, Ionics 19(2013) 177-183. [18] Y.S. Dzyazko, S.L. Vasilyuk, L.M. Rozhdestvenskaya, V.N. Belyakov, N.V. Stefanyak, N. Kabay, M. Yüksel, Ö. Arar, Ü. Yüksel, Electro-deionization of Cr (VI)-Containing Solution. Part Ⅱ:Chromium transport through inorganic ion-exchanger and composite ceramic membrane, Chem. Eng. Commun. 196(2008) 22-38. [19] S. Nataraj, K. Hosamani, T. Aminabhavi, Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal, Desalination 217(2007) 181-190. [20] A. Narębska, M. Staniszewski, Separation of carboxylic acids from carboxylates by diffusion dialysis, Sep. Sci. Technol. 43(2008) 490-501. [21] E.H. Cwirko, R.G. Carbonell, A theoretical analysis of Donnan dialysis across charged porous membranes, J. Membr. Sci. 48(1990) 155-179. [22] E. Castillo, M. Granados, J.L. Cortina, Chemically facilitated chromium (VI) transport throughout an anion-exchange membrane:Application to an optical sensor for chromium (VI) monitoring, J. Chromatogr. A 963(2002) 205-211. [23] E. Castillo, M. Granados, J.L. Cortina, Chromium (VI) transport through the Raipore 1030 anion exchange membrane, Anal. Chim. Acta 464(2002) 15-23. [24] P. Thapliyal, Interpenetrating polymer networks, Compos. Interface 17(2010) 85-89. [25] L. Toledo, B.L. Rivas, B.F. Urbano, J. Sánchez, Novel N-methyl-D-glucamine-based water-soluble polymer and its potential application in the removal of arsenic, Sep. Purif. Technol. 103(2013) 1-7. [26] Y. Tapiero, J. Sánchez, B.L. Rivas, Ion-selective interpenetrating polymer networks supported inside polypropylene microporous membranes for the removal of chromium ions from aqueous media, Polym. Bull. 1-25(2015). [27] Y. Tapiero, B.L. Rivas, J. Sanchez, Functional ion membranes supported inside microporous polypropylene membranes to transport chromium ions:Determination of mass transport coefficient, J. Chil. Chem. Soc. 59(2014) 2737-2746. [28] J. Sánchez, J. Wolska, E. Yörükoğlu, B.L. Rivas, M. Bryjak, N. Kabay, Removal of boron from water through soluble polymer based on N-methyl-D-glucamine and regenerated-cellulose membrane, Desalin. Water Treat. 57(2016) 861-869. [29] O. Thomas, C. Burgess, UV-visible Spectrophotometry of Water and Wastewater, Elsevier, 2007. [30] R. Burke, R. Mavrodineanu, Acidic potassium dichromate solutions as ultraviolet absorbance standards, Standardization in Spectrophotometry and Luminescence Measurements:Proceedings of a Workshop Seminar Held at the National Bureau of Standards, Gaithersburg, Maryland, November, November 19-20, 1975, US Department of Commerce, National Bureau of Standards 1976, p. 121. [31] Y. Tapiero, B.L. Rivas, J. Sánchez, M. Bryjak, N. Kabay, Polypropylene membranes modified with interpenetrating polymer networks for the removal of chromium ions, J. Appl. Polym. Sci. 132(2015). [32] A. Szymczyk, P. Fievet, J. Reggiani, J. Pagetti, Electrokinetic characterization of mixed alumina-titania-silica MF membranes by streaming potential measurements, Desalination 115(1998) 129-134. [33] J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, M. Persin, Electrokinetic characterization of the Al2O3 ceramic MF membrane by streaming potential measurements, Desalination 235(2009) 102-109. [34] S.-J. Seo, B.-C. Kim,K.-W. Sung, J.Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun,J.-Y. Lee, S.-H. Moon, Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications, J. Membr. Sci. 428(2013) 17-23. [35] R.-Q. Fu, J.-J. Woo, S.-J. Seo, J.-S. Lee, S.-H. Moon, Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network:Preparation and characterizations, J. Power Sources 179(2008) 458-466. [36] J. Sun Koo, N.-S. Kwak, T.S. Hwang, Synthesis and properties of an anion-exchange membrane based on vinylbenzyl chloride-styrene-ethyl methacrylate copolymers, J. Membr. Sci. 423(2012) 293-301. [37] R. Liu, L. Wu, J. Pan, C. Jiang, T. Xu, Diffusion dialysis membranes with semiinterpenetrating network for alkali recovery, J. Membr. Sci. 451(2014) 18-23. [38] M. Ulbricht, Advanced functional polymer membranes, Polymer 47(2006) 2217-2262. [39] H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto, D.R. Lloyd, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation, J. Membr. Sci. 179(2000) 91-100. [40] Q. Yang, Z.-K. Xu, Z.-W. Dai, J.-L. Wang, M. Ulbricht, Surface modification of polypropylene microporous membranes with a novel glycopolymer, Chem. Mater. 17(2005) 3050-3058. [41] J. Schauer, J. Hnát, L. Brožová, J. Žitka, K. Bouzek, Heterogeneous anion-selective membranes:Influence of a water-soluble component in the membrane on the morphology and ionic conductivity, J. Membr. Sci. 401(2012) 83-88. [42] I.S.M.T. Maddanimath, S.R. Sainkar, K. Vijayamohanan, K.I. Shaikh, Patil, S.P. Vernekar, Humidity sensing properties of surface functionalized polyethylene and polypropylene films, Sensors Actuators B 81(2002) 141-151. [43] Y.-F. Yang, L.-S. Wan, Z.-K. Xu, Surface hydrophilization for polypropylene microporous membranes:A facile interfacial crosslinking approach, J. Membr. Sci. 326(2009) 372-381. [44] A.K. Pandey, A. Goswami, D. Sen, S. Mazumder, R.F. Childs, Formation and characterization of highly crosslinked anion-exchange membranes, J. Membr. Sci. 217(2003) 117-130. [45] C.-c. Wang, F.-l. Yang, L.-F. Liu, Z.-m. Fu, Y. Xue, Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes, J. Membr. Sci. 345(2009) 223-232. [46] D.Y. Xinyuan Zhu, Hongxi Yao, Pingfang Zhu, In situ FTIR spectroscopic study of the regularity bands and partial-order melts of isotactic poly(propylene), Macromol. Rapid Commun. 21(2000) 354-357. [47] E. Pretsch, P. Bühlmann, C. Affolter, E. Pretsch, P. Bhuhlmann, C. Affolter, Structure Determination of Organic Compounds, Springer, 2000. [48] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 64(2012) 49-60. [49] T. Sata, Ion Exchange Membranes:Preparation, Characterization, Modification and Application, Royal Society of Chemistry, UK, 2004. |
[1] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[2] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[3] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[4] | Jianhua Feng, Sen Xiong, Li Ren, Yong Wang. Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 15-21. |
[5] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[6] | Yinchang Pei, Shengpeng Mo, Qinglin Xie, Nanchun Chen, Zhongxin Yang, Lili Huang, Lili Ma. Stellerite-seeded facile synthesis of zeolite X with excellent aqueous Cd2+ and Ni2+ adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 61-74. |
[7] | Xiaoda Wang, Wenkai Li, Shiwei Wang, Qinglian Wang, Ling Li, Hongxing Wang, Ting Qiu. Reaction kinetics for the heterogeneously resin-catalyzed and homogeneously self-catalyzed esterification of thioglycolic acid with 2-ethyl-1-hexanol [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 111-119. |
[8] | Mohamed A. El-Nemr, Ibrahim M. A. Ismail, Nabil M. Abdelmonem, Ahmed El Nemr, Safaa Ragab. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 199-222. |
[9] | Dongmei Jia, Huamin Cai, Yongzheng Duan, Jiangbao Xia, Jia Guo. Efficient adsorption to hexavalent chromium by iron oxalate modified D301: Characterization, performance and mechanisms [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 61-69. |
[10] | Trung Thanh Nguyen, Vu Anh Khoa Tran, Le Ba Tran, Phuoc Toan Phan, Minh Tan Nguyen, Long Giang Bach, Surapol Padungthon, Cong Khiem Ta, Nhat Huy Nguyen. Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 378-384. |
[11] | Tianping Wang, Xuxiang Jia, Chunsong Ye. A more precise method to evaluate kinetic leakage of anion exchange resin used in condensate polishing of power plant [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 160-166. |
[12] | Zhenqiang Zhang, Danfeng Yu, Xiubin Xu, Huayi Li, Taoyan Mao, Cheng Zheng, Jianjia Huang, Hui Yang, Zihan Niu, Xu Wu. A polypropylene melt-blown strategy for the facile and efficient membrane separation of oil-water mixtures [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 383-390. |
[13] | Run Liu, Qinghong Shi. Protein retention in dextran-grafted cation exchange chromatography: The influence of pHs, counterions and polymer structure [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1904-1910. |
[14] | Adriana Reyes-Serrano, Joel E. López-Alejo, Manuel A. Hernández-Cortázar, Ignacio Elizalde. Removing contaminants from tannery wastewater by chemical precipitation using CaO and Ca(OH)2 [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1107-1111. |
[15] | Yangyang Zhao, Xianxiu Li, Linling Yu, Xiaoyan Dong, Yan Sun. Lysozyme adsorption to cation exchanger derivatized by sequential modification of poly(ethylenimine)-Sepharose with succinic anhydride and ethanolamine: Effect of pH and ionic strength [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 440-444. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1378
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||