[1] G.-R.R. Bernardo, R.-M.J. Rene, A.-D.l.T. Ma Catalina, Chromium (Ⅲ) uptake by agrowaste biosorbents:Chemical characterization, sorption-desorption studies, and mechanism, J. Hazard. Mater. 170(2009) 845-854. [2] M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater:A review, Water Air Soil Pollut. 200(2009) 59-77. [3] WHO, Guidelines for Drinking Water Quality, World Health Organization, Genova, 2008. [4] T. Sardohan, E. Kir, A. Gulec, Y. Cengeloglu, Removal of Cr (Ⅲ) and Cr (VI) through the plasma modified and unmodified ion-exchange membranes, Sep. Purif. Technol. 74(2010) 14-20. [5] S. Kalidhasan, A.S.K. Kumar, V. Rajesh, N. Rajesh, The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective, Coord. Chem. Rev. 317(2016) 157-166. [6] R.R. Patterson, S. Fendorf, M. Fendorf, Reduction of hexavalent chromium by amorphous iron sulfide, Environ. Sci. Technol. 31(1997) 2039-2044. [7] D. Park, S.-R. Lim, Y.-S. Yun, J.M. Park, Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction, Chemosphere 70(2007) 298-305. [8] W. Zheng, J. Hu, Z. Han, E. Diesel, Z. Wang, Z. Zheng, C. Ba, J. Langer, J. Economy, Interactions of Cr (VI) with hybrid anion exchange/porous carbon fibers in aqueous solution at natural pH, Chem. Eng. J. 287(2016) 54-61. [9] F. Melak, G. Du Laing, A. Ambelu, E. Alemayehu, Application of freeze desalination for chromium (VI) removal from water, Desalination 377(2016) 23-27. [10] M. Bodzek, Application of membrane techniques for the removal of micropollutants from water and wastewater, Copernican Lett. 6(2015) 24-33. [11] S. Saravanan, K.M.S. Begum, N. Anantharaman, Removal of hexavalent chromium by emulsion liquid membrane technique, J. Univ. Chem. Technol. Metall. 41(2006) 333-342. [12] P. Venkateswaran, K. Palanivelu, Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier, Hydrometallurgy 78(2005) 107-115. [13] A. Bhowal, S. Datta, Studies on transport mechanism of Cr (VI) extraction from an acidic solution using liquid surfactant membranes, J. Membr. Sci. 188(2001) 1-8. [14] A. Tor, Y. Çengeloğlu, M. Ersöv, G. Arslan, Transport of chromium through cationexchange membranes by Donnan dialysis in the presence of some metals of different valences, Desalination 170(2004) 151-159. [15] S. Koter, M. Kultys, B. Gilewicz-Łukasik, I. Koter, Modeling the transport of sulfuric acid and its sulfates (MgSO4, ZnSO4, Na2SO4) through an anion-exchange membrane, Desalination 342(2014) 75-84. [16] J. Mathur, M. Murali, M.B. Krishna, V. Ramachandhran, M. Hanra, B. Misra, Diffusion dialysis aided electrodialysis process for concentration of radionuclides in acid medium, J. Radioanal. Nucl. Chem. 232(1998) 237-240. [17] A.A. Said, M. Amara, H. Kerdjoudj, The effect of thiourea as a complexing agent on the separation of metallic ions through cation exchange membranes by Donnan dialysis, Ionics 19(2013) 177-183. [18] Y.S. Dzyazko, S.L. Vasilyuk, L.M. Rozhdestvenskaya, V.N. Belyakov, N.V. Stefanyak, N. Kabay, M. Yüksel, Ö. Arar, Ü. Yüksel, Electro-deionization of Cr (VI)-Containing Solution. Part Ⅱ:Chromium transport through inorganic ion-exchanger and composite ceramic membrane, Chem. Eng. Commun. 196(2008) 22-38. [19] S. Nataraj, K. Hosamani, T. Aminabhavi, Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal, Desalination 217(2007) 181-190. [20] A. Narębska, M. Staniszewski, Separation of carboxylic acids from carboxylates by diffusion dialysis, Sep. Sci. Technol. 43(2008) 490-501. [21] E.H. Cwirko, R.G. Carbonell, A theoretical analysis of Donnan dialysis across charged porous membranes, J. Membr. Sci. 48(1990) 155-179. [22] E. Castillo, M. Granados, J.L. Cortina, Chemically facilitated chromium (VI) transport throughout an anion-exchange membrane:Application to an optical sensor for chromium (VI) monitoring, J. Chromatogr. A 963(2002) 205-211. [23] E. Castillo, M. Granados, J.L. Cortina, Chromium (VI) transport through the Raipore 1030 anion exchange membrane, Anal. Chim. Acta 464(2002) 15-23. [24] P. Thapliyal, Interpenetrating polymer networks, Compos. Interface 17(2010) 85-89. [25] L. Toledo, B.L. Rivas, B.F. Urbano, J. Sánchez, Novel N-methyl-D-glucamine-based water-soluble polymer and its potential application in the removal of arsenic, Sep. Purif. Technol. 103(2013) 1-7. [26] Y. Tapiero, J. Sánchez, B.L. Rivas, Ion-selective interpenetrating polymer networks supported inside polypropylene microporous membranes for the removal of chromium ions from aqueous media, Polym. Bull. 1-25(2015). [27] Y. Tapiero, B.L. Rivas, J. Sanchez, Functional ion membranes supported inside microporous polypropylene membranes to transport chromium ions:Determination of mass transport coefficient, J. Chil. Chem. Soc. 59(2014) 2737-2746. [28] J. Sánchez, J. Wolska, E. Yörükoğlu, B.L. Rivas, M. Bryjak, N. Kabay, Removal of boron from water through soluble polymer based on N-methyl-D-glucamine and regenerated-cellulose membrane, Desalin. Water Treat. 57(2016) 861-869. [29] O. Thomas, C. Burgess, UV-visible Spectrophotometry of Water and Wastewater, Elsevier, 2007. [30] R. Burke, R. Mavrodineanu, Acidic potassium dichromate solutions as ultraviolet absorbance standards, Standardization in Spectrophotometry and Luminescence Measurements:Proceedings of a Workshop Seminar Held at the National Bureau of Standards, Gaithersburg, Maryland, November, November 19-20, 1975, US Department of Commerce, National Bureau of Standards 1976, p. 121. [31] Y. Tapiero, B.L. Rivas, J. Sánchez, M. Bryjak, N. Kabay, Polypropylene membranes modified with interpenetrating polymer networks for the removal of chromium ions, J. Appl. Polym. Sci. 132(2015). [32] A. Szymczyk, P. Fievet, J. Reggiani, J. Pagetti, Electrokinetic characterization of mixed alumina-titania-silica MF membranes by streaming potential measurements, Desalination 115(1998) 129-134. [33] J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, M. Persin, Electrokinetic characterization of the Al2O3 ceramic MF membrane by streaming potential measurements, Desalination 235(2009) 102-109. [34] S.-J. Seo, B.-C. Kim,K.-W. Sung, J.Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun,J.-Y. Lee, S.-H. Moon, Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications, J. Membr. Sci. 428(2013) 17-23. [35] R.-Q. Fu, J.-J. Woo, S.-J. Seo, J.-S. Lee, S.-H. Moon, Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network:Preparation and characterizations, J. Power Sources 179(2008) 458-466. [36] J. Sun Koo, N.-S. Kwak, T.S. Hwang, Synthesis and properties of an anion-exchange membrane based on vinylbenzyl chloride-styrene-ethyl methacrylate copolymers, J. Membr. Sci. 423(2012) 293-301. [37] R. Liu, L. Wu, J. Pan, C. Jiang, T. Xu, Diffusion dialysis membranes with semiinterpenetrating network for alkali recovery, J. Membr. Sci. 451(2014) 18-23. [38] M. Ulbricht, Advanced functional polymer membranes, Polymer 47(2006) 2217-2262. [39] H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto, D.R. Lloyd, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation, J. Membr. Sci. 179(2000) 91-100. [40] Q. Yang, Z.-K. Xu, Z.-W. Dai, J.-L. Wang, M. Ulbricht, Surface modification of polypropylene microporous membranes with a novel glycopolymer, Chem. Mater. 17(2005) 3050-3058. [41] J. Schauer, J. Hnát, L. Brožová, J. Žitka, K. Bouzek, Heterogeneous anion-selective membranes:Influence of a water-soluble component in the membrane on the morphology and ionic conductivity, J. Membr. Sci. 401(2012) 83-88. [42] I.S.M.T. Maddanimath, S.R. Sainkar, K. Vijayamohanan, K.I. Shaikh, Patil, S.P. Vernekar, Humidity sensing properties of surface functionalized polyethylene and polypropylene films, Sensors Actuators B 81(2002) 141-151. [43] Y.-F. Yang, L.-S. Wan, Z.-K. Xu, Surface hydrophilization for polypropylene microporous membranes:A facile interfacial crosslinking approach, J. Membr. Sci. 326(2009) 372-381. [44] A.K. Pandey, A. Goswami, D. Sen, S. Mazumder, R.F. Childs, Formation and characterization of highly crosslinked anion-exchange membranes, J. Membr. Sci. 217(2003) 117-130. [45] C.-c. Wang, F.-l. Yang, L.-F. Liu, Z.-m. Fu, Y. Xue, Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes, J. Membr. Sci. 345(2009) 223-232. [46] D.Y. Xinyuan Zhu, Hongxi Yao, Pingfang Zhu, In situ FTIR spectroscopic study of the regularity bands and partial-order melts of isotactic poly(propylene), Macromol. Rapid Commun. 21(2000) 354-357. [47] E. Pretsch, P. Bühlmann, C. Affolter, E. Pretsch, P. Bhuhlmann, C. Affolter, Structure Determination of Organic Compounds, Springer, 2000. [48] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 64(2012) 49-60. [49] T. Sata, Ion Exchange Membranes:Preparation, Characterization, Modification and Application, Royal Society of Chemistry, UK, 2004. |