Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (1): 109-115.DOI: 10.1016/j.cjche.2017.02.007
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Huan Liu, Zhen Ma
Received:
2017-01-06
Revised:
2017-02-05
Online:
2018-03-01
Published:
2018-01-28
Contact:
Zhen Ma,E-mail address:zhenma@fudan.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21177028, 21477022).
Huan Liu, Zhen Ma
通讯作者:
Zhen Ma,E-mail address:zhenma@fudan.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21177028, 21477022).
Huan Liu, Zhen Ma. Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation[J]. Chin.J.Chem.Eng., 2018, 26(1): 109-115.
Huan Liu, Zhen Ma. Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 109-115.
[1] W.F. Yan, S. Brown, Z.W. Pan, S.M. Mahurin, S.H. Overbury, S. Dai, Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate, Angew. Chem. Int. Ed. 45(2006) 3614-3618. [2] Z. Ma, H.F. Yin, S.H. Overbury, S. Dai, Metal phosphates as a new class of supports for gold nanocatalysts, Catal. Lett. 126(2008) 20-30. [3] Z. Ma, H.F. Yin, S. Dai, Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation, Catal. Lett. 138(2010) 40-45. [4] M.J. Li, Z.L. Wu, S.H. Overbury, CO oxidation on phosphate-supported Au catalysts:Effect of support reducibility on surface reactions, J. Catal. 278(2011) 133-142. [5] H. Liu, Y. Lin, Z. Ma, Au/LaPO4 nanowires:Synthesis, characterization, and catalytic CO oxidation, J. Taiwan Inst. Chem. Eng. 62(2016) 275-282. [6] X.S. Qian, H.M. Qin, T. Meng, Y. Lin, Z. Ma, Metal phosphate-supported Pt catalysts for CO oxidation, Materials 7(2014) 8105-8130. [7] B. Pan, S.J. Luo, W.Y. Su, X.X. Wang, Photocatalytic CO2 reduction with H2O over LaPO4 nanorods deposited with Pt cocatalyst, Appl. Catal. B Environ. 168-169(2015) 458-464. [8] H. Tamai, T. Ikeya, F. Nishiyama, H. Yasuda, K. Iida, S. Nojima, NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles, J. Mater. Sci. 35(2000) 4945-4953. [9] M. Machida, T. Eidome, S. Minami, H.P. Buwono, S. Hinokuma, Y. Nagao, Y. Nakahara, Tuning the electron density of Rh supported on metal phosphates for three-way catalysis, J. Phys. Chem. C 119(2015) 11653-11661. [10] Y. Lin, T. Meng, Z. Ma, Catalytic decomposition of N2O over RhOx supported on metal phosphates, J. Ind. Eng. Chem. 28(2015) 138-146. [11] H. Liu, Z. Ma, Effect of different LaPO4 supports on the catalytic performance of Rh2O3/LaPO4 in N2O decomposition and CO oxidation, J. Taiwan Inst. Chem. Eng. 71(2017) 373-380. [12] Y.W. Cui, H. Liu, Y. Lin, Z. Ma, Metal phosphate-supported RuOx catalysts for N2O decomposition, J. Taiwan Inst. Chem. Eng. 67(2016) 254-262. [13] J. Huang, L.C. Wang, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation, Appl. Catal. B Environ. 101(2011) 560-569. [14] M.I. Domlnguez, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Gold/hydroxyapatite catalysts:Synthesis, characterization and catalytic activity to CO oxidation, Appl. Catal. B Environ. 87(2009) 245-251. [15] K.F. Zhao, B.T. Qiao, J.H. Wang, Y.J. Zhang, T. Zhang, A highly active and sinteringresistant Au/FeOx-hydroxyapatite catalyst for CO oxidation, Chem. Commun. 47(2011) 1779-1781. [16] N. Phonthammachai, Z.Y. Zhong, J. Guo, Y.F. Han, T.J. White, Synthesis of high performance hydroxyapatitie-gold catalysts for CO oxidation, Gold Bull. 41(2008) 42-50. [17] H. Sun, F.Z. Su, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes, Angew. Chem. Int. Ed. Eng. 48(2009) 4390-4393. [18] Y. Liu, H. Tsunoyama, T. Akita, S. Xie, T. Tsukuda, Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite:Size effect in the sub-2 nm regime, ACS Catal. 1(2011) 2-6. [19] C.Y. Huang, Z. Ma, P.F. Xie, Y.H. Yue, W.M. Hua, Z. Gao, Hydroxyapatite-supported rhodium catalysts for N2O decomposition, J. Mol. Catal. A Chem. 400(2015) 90-94. [20] C.Y. Huang, Y.X. Jiang, Z. Ma, P.F. Xie, Y. Lin, T. Meng, C.X. Miao, Y.H. Yue, W.M. Hua, Z. Gao, Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition, J. Mol. Catal. A Chem. 420(2016) 73-81. [21] A. Venugopal, M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts:Behavior in the water gas shift reaction, Appl. Catal. A Gen. 245(2003) 137-147. [22] J.W. Jaworski, D. Kim, K. Jung, S. Kim, J.H. Jung, J.O. Jeong, H.S. Jeon, B.K. Min, K.Y. Kwon, Surface modification of hydroxyapatite for hydrogen generation, J. Colloid Interface Sci. 358(2011) 598-603. [23] Z. Opre, D. Ferri, F. Krumeich, T. Mallat, A. Baiker, Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite, J. Catal. 241(2006) 287-295. [24] Z. Opre, D. Ferri, F. Krumeich, T. Mallat, A. Baiker, Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy, J. Catal. 251(2007) 48-58. [25] C. Mondelli, D. Ferri, A. Baiker, Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol:An in situ ATR-IR spectroscopy study, J. Catal. 258(2008) 170-176. [26] Y. Takita, X. Qing, A. Takami, H. Nishiguchi, K. Nagaoka, Oxidative dehydrogenation of isobutane to isobutene Ⅲ reaction mechanism over CePO4 catalyst, Appl. Catal. A Gen. 296(2005) 63-69. [27] Y. Takita, K.I. Sano, T. Muraya, H. Nishiguchi, N. Kawata, M. Ito, T. Akbay, T. Ishihara, Oxidative dehydrogenation of iso-butane to iso-butene Ⅱ. Rare earth phosphate catalysts, Appl. Catal. A Gen. 170(1998) 21-23. [28] C. Dume, W.F. HöElderich, Amination of 1-octanol, Appl. Catal. A Gen. 183(1999) 167-176. [29] G.S. Devi, D. Giridhar, B.M. Reddy, Vapour phase O-alkylation of phenol over alkali promoted rare earth metal phosphates, J. Mol. Catal. A Chem. 181(2002) 173-178. [30] H. Onoda, H. Nariai, A. Moriwaki, H. Maki, I. Motooka, Formation and catalytic characterization of various rare earth phosphates, J. Mater. Chem. 12(2002) 1754-1760. [31] W.Y. Yao, Y. Liu, X.Q. Wang, X.L. Weng, H.Q. Wang, Z.B. Wu, The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3, J. Phys. Chem. C 120(2016) 221-229. [32] F. Li, Y.B. Zhang, D.H. Xiao, D.Q. Wang, X.Q. Pan, X.G. Yang, Hydrothermal method prepared Ce-P-O catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range, ChemCatChem 2(2010) 1416-1419. [33] Y.J. Zhang, J.H. Wang, T. Zhang, Novel Ca-doped CePO4 supported ruthenium catalyst with superior catalytic performance for aerobic oxidation of alcohols, Chem. Commun. 47(2011) 5307. [34] M. Itoh, M. Takehara, M. Saito, K. Machida, NOx reduction activity over phosphatesupported platinum catalysts with hydrogen under oxygen-rich condition, IOP Conf. Ser.:Mater. Sci. Eng. 18(2011) 172007. [35] F. Romero-Sarria, M.I. Domlnguez, M.A. Centeno, J.A. Odriozola, CO oxidation at low temperature on Au/CePO4:Mechanistic aspects, Appl. Catal. B Environ. 107(2011) 268-273. [36] S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, F. Audubert, Rare earth phosphate powders RePO4·nH2O (Re_La, Ce or Y)-Part I. Synthesis and characterization, J. Solid State Chem. 177(2004) 1302-1311. [37] X.L. Weng, R.J. Mei, M.P. Shi, Q.Y. Kong, Y. Liu, Z.B. Wu, CePO4 catalyst for elemental mercuryremovalinsimulated coal-fired fluegas, Energy Fuels 29(2015)3359-3365. [38] Y.P. Fang, A.W. Xu, R.Q. Song, H.X. Zhang, L.P. You, J.C. Yu, H.Q. Liu, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires, J. Am. Chem. Soc. 125(2003) 16025-16034. [39] Y.J. Zhang, H.M.Guan,Hydrothermalsynthesisandcharacterization of hexagonal and monoclinic CePO4 single-crystal nanowires, J. Cryst. Growth 256(2003) 156-161. [40] F.Y. Lu, Y.Q. Shen, X. Sun, Z.L. Dong, R.C. Ewing, J. Lian, Size dependence of radiationinduced amorphization and recrystallization of synthetic nanostructured CePO4 monazite, Acta Mater. 61(2013) 2984-2992. [41] D. Palma-Ramlrez, M.A. Domlnguez-Crespo, A.M. Torres-Huerta, H. DorantesRosales, E. Ramlrez-Meneses, E. Rodrlguez, Microwave-assisted hydrothermal synthesis of CePO4 nanostructures:Correlation between the structural and optical properties, J. Alloys Compd. 643(2015) S209-S218. [42] F. Kapteijn, J. Rodriguez-Mirasol, J.A. Moulijn, Heterogeneous catalytic decomposition of nitrous oxide, Appl. Catal. B Environ. 9(1996) 25-64. [43] M. Konsolakis, Recent advances on nitrous oxide (N2O) decomposition over nonnoble-metal oxide catalysts:Catalytic performance, mechanistic considerations, and surface chemistry aspects, ACS Catal. 5(2015) 6397-6421. [44] Z.M. Liu, F. He, L.L. Ma, S. Peng, Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts, Catal. Surv. Asia 20(2016) 121-132. [45] E. Kondratenko, V. Kondratenko, M. Santiago, J. Perezramirez, Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition, J. Catal. 256(2008) 248-258. [46] H. Beyer, J. Emmerich, K. Chatziapostolou, K. Köhler, Decomposition of nitrous oxide by rhodium catalysts:Effect of rhodium particle size and metal oxide support, Appl. Catal. A Gen. 391(2011) 411-416. [47] K. Yuzaki, T. Yarimizu, K. Aoyagi, S. Ito, K. Kunimori, Catalytic decomposition of N2O over supported Rh catalysts:Effects of supports and Rh dispersion, Catal. Today 45(1998) 129-134. [48] P.S.S. Reddy, N. Seshu Babu, N. Pasha, N. Lingaiah, P.S. Sai Prasad, Influence of microwave irradiation on catalytic decomposition of nitrous oxide over Rh/Al2O3 catalyst, Catal. Commun. 9(2008) 2303-2307. [49] J. Haber, M. Nattich, T. Machej, Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition, Appl. Catal. B Environ. 77(2008) 278-283. [50] A. Bueno-Lopez, I. Such-Basanez, C.S.M.D. Lecea, Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2, J. Catal. 244(2006) 102-112. [51] S. Parres-Esclapez, M.J. Illan-Gomez, C.S.-M. de Lecea, A. Bueno-Lopez, On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt, Appl. Catal. B Environ. 96(2010) 370-378. [52] M. Hussain, D. Fino, N. Russo, Development of modified KIT-6 and SBA-15-spherical supported Rh catalysts for N2O abatement:From powder to monolith supported catalysts, Chem. Eng. J. 238(2014) 198-205. [53] J.M. Du, W.W. Kuang, H.L. Xu, W. Shen, D.Y. Zhao, The influence of precursors on Rh/SBA-15 catalysts for N2O decomposition, Appl. Catal. B Environ. 84(2008) 490-496. [54] L. Chmielarz, P. Kustrowski, M. Drozdek, M. Rutkowska, R. Dziembaj, M. Michalik, P. Cool, E.F. Vansant, SBA-15 mesoporous silica modified with rhodium by MDD method and its catalytic role for N2O decomposition reaction, J. Porous. Mater. 18(2010) 483-491. [55] L. Kubonova, D. Fridrichova, A. Wach, P. Kustrowski, L. Obalova, P. Cool, Catalytic activity of rhodium grafted on ordered mesoporous silica materials modified with aluminum in N2O decomposition, Catal. Today 257(2015) 51-58. [56] H. Liu, Y. Lin, Z. Ma, Rh2O3/mesoporous MOx-Al2O3(M_Mn, Fe, Co, Ni, Cu, Ba) catalysts:Synthesis, characterization, and catalytic applications, Chin. J. Catal. 37(2016) 73-82. [57] T. Meng, N. Ren, Z. Ma, Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition, J. Mol. Catal. A Chem. 404-405(2015) 233-239. [58] M. Cao, C. Hu, Q. Wu, C. Guo, Y. Qi, E. Wang, Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires, Nanotechnology 16(2005) 282-286. [59] L. Li, S.F. Niu, Y. Qu, Q. Zhang, H. Li, Y.S. Li, W.R. Zhao, J.L. Shi, One-pot synthesis of uniform mesoporous rhodium oxide/alumina hybrid as high sensitivity and low power consumption methane catalytic combustion micro-sensor, J. Mater. Chem. 22(2012) 9263-9267. [60] M. Machida, S. Minami, S. Hinokuma, H. Yoshida, Y. Nagao, T. Sato, Y. Nakahara, Unusual redox behavior of Rh/AlPO4 and its impact on three-way catalysis, J. Phys. Chem. C 119(2015) 373-380. [61] L.M. Qiu, F. Liu, L.Z. Zhao, Y. Ma, J.N. Yao, Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder, Appl. Surf. Sci. 252(2006) 4931-4935. [62] E. Beche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz), Surf. Interface Anal. 40(2008) 264-267. [63] K.F. Zhao, H.L. Tang, B.T. Qiao, L. Li, J.H. Wang, High activity of Au/γ-Fe2O3 for CO oxidation:Effect of support crystal phase in catalyst design, ACS Catal. 5(2015) 3528-3539. [64] M. Piumetti, M. Hussain, D. Fino, N. Russo, Mesoporous silica supported Rh catalysts forhighconcentrationN2Odecomposition, Appl. Catal. B Environ.165(2015)158-168. [65] S. Parres-Esclapez, F.E. Lopez-Suarez, A. Bueno-Lopez, M.J. Illan-Gomez, B. Ura, J. Trawczynski, Rh-Sr/Al2O3 catalyst for N2O decomposition in the presence of O2, Top. Catal. 52(2009) 1832-1836. [66] L. Obalova, K. Karaskova, A. Wach, P. Kustrowski, K. Mamulova-Kutlakova, S. Michalik, K. Jiratova, Alkali metals as promoters in Co-Mn-Al mixed oxide for N2O decomposition, Appl. Catal. A Gen. 462-463(2013) 227-235. [67] L. Obalova, K. Jiratova, F. Kovanda, K. Pacultova, Z. Lacný, Z. Mikulova, Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds, Appl. Catal. B Environ. 60(2005) 289-297. [68] L. Xue, H. He, C. Liu, C.B. Zhang, B. Zhang, Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition, Environ. Sci. Technol. 43(2009) 890-895. [69] Z. Ma, Y. Ren, Y. Lu, P.G. Bruce, Catalytic decomposition of N2O on ordered crystalline metal oxides, J. Nanosci. Nanotechnol. 13(2013) 5093-5103. [70] J. Zheng, S. Meyer, K. Köhler, Abatement of nitrous oxide by ruthenium catalysts:Influence of the support, Appl. Catal. A Gen. 505(2015) 44-51. [71] S. Imamura, J.I. Tadani, Y. Saito, Y. Okamoto, H. Jindai, C. Kaito, Decomposition of N2O on Rh-loaded Pr/Ce composite oxides, Appl. Catal. A Gen. 201(2000) 121-127. [72] M.Hussain,P.Akhter,D.Fino,N.Russo,ModifiedKIT-6andSBA-15-sphericalsupported metal catalysts for N2O decomposition, J. Environ. Chem. Eng. 1(2013) 164-174. [73] Y.P. Cai, H.G. Stenger Jr., C.E. Lyman, Catalytic CO oxidation over Pt-Rh/γ-Al2O3 catalysts, J. Catal. 161(1996) 123-131. [74] H. Guan, J. Lin, B. Qiao, X. Yang, L. Li, S. Miao, J.Y. Liu, A.Q. Wang, X.D. Wang, T. Zhang, Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures, Angew. Chem. Int. Ed. 55(2016) 2820-2824. [75] V.R. Perez, A.V.M. Beltran, Q.G. He, Q. Wang, C.S.M.D. Lecea, B.A. Lopez, Preparation of ceria-supported rhodium oxide sub-nanoparticles with improved catalytic activity for CO oxidation, Catal. Commun. 33(2013) 47-50. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[6] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[7] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[8] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[9] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[10] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[11] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
[12] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[13] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[14] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[15] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1629
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||