[1] T. Dutta, K.H. Kim, M. Uchimiya, E.E. Kwon, Global demand for rare earth resources and strategies for green mining, Environ. Res. 150(1) (2016) 182-190.[2] M. Feng, C. Xu, J. Kynicky, L. Zeng, W.L. Song, Rare earth element enrichment in Palaeoproterozoic Fengzhen carbonatite from the North China block, Int. Geol. Rev. 58(15) (2016) 1940-1950.[3] M. Panigrahi, M. Grabda, D. Kozak, A. Dorai, E. Shibata, Liquid-liquid extraction of neodymium ions from aqueous solutions of NdCl3 by phosphonium-based ionic liquids, Sep. Purif. Technol. 171(1) (2016) 263-269.[4] A. Cuvier, L. Pourcelot, A. Probst, J. Prunier, R.G. Le, Trace elements and Pb isotopes in soils and sediments impacted by uranium mining, Sci. Total Environ. 566(1) (2016) 238-249.[5] J.A. Dound, H.F. Aly, Kinetic approach for Er (Ⅲ) and Am (Ⅲ) separation using selective thenoyltrifluoro acetone-triphenylarsine oxide systems, Proceedings of the International Solvent Extraction Conference, Japan 1996, pp. 475-480.[6] J. Kovalancik, M. Galova, Extraction separation of rare-earth elements by amines in the presence of complexing agents, J. Radioanal. Nucl. Chem. 162(1) (1992) 35-46.[7] Y. Chen, H. Wang, Y. Pei, Selective separation of scandium (Ⅲ) from rare earth metals by carboxyl-functionalized ionic liquids, Sep. Purif. Technol. 178(5) (2017) 261-268.[8] D.F. Peppard, G.W. Mason, Separation of rare earths by solvent extraction, US Pat. 2955913(1960).[9] J.B. Lewis, The mechanism of mass transfer of solutes across liquid-liquid interfaces, Chem. Eng. Sci. 3(6) (1954) 248-259.[10] Z. Zheng, J. Lu, D.Q. Li, G.X. Ma, The kinetics study in liquid-liquid systems with constant interfacial area cell with laminar flow, Chem. Eng. Sci. 53(13) (1998) 2327-2333.[11] N.S. Awward, H.A. Ibrahium, Kinetic extraction of titanium (IV) from chloride solution containing Fe (Ⅲ), Cr (Ⅲ) and V (V) using the single drop technique, Environ. Chem. Eng. 1(5) (2013) 65-72.[12] R.K. Biswas, M.A. Hayat, Kinetics of solvent extraction of zirconium from chloride medium by D2EHPA in kerosene using the single drop technique, Hydrometallurgy 65(2) (2002) 205-216.[13] K. Durrani, C. Hanson, M.A. Hughes, Droplet phenomena in the Ni/Na/D2EHPAIH20 system, Metall. Trans. B 8(4) (1976) 169-174.[14] S. Muralidharan, H. Fresier, Cpc tool for practical separation of metals and fundamental investigations of chemical mechanisms, ISEC 1(2) (1996) 427-432.[15] G.X. Ma, H. Freiser, S. Muralidharan, Interfacial catalysis of formation and dissociation of tervalent lanthanide complexes in two-phase systems, Anal. Chem. 69(4) (1997) 2827-2834.[16] H. Freiser, New tools for old questions in solvent extraction chemistry, ISEC 1(6) (1996) 11-16.[17] M.A. Hughes, Rate of extraction of cobalt from an aqueous solution to D2EHPA in a growing drop cell, Hydrometallurgy 13(3) (1985) 249-264.[18] H.C. Kao, P.S. Yen, R.S. Juang, Solvent extraction of La(Ⅲ) and Nd(Ⅲ) from nitrate solutions with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester, Chem. Eng. J. 119(2-3) (2006) 167-174.[19] X. Wang, S. Meng, D. Li, Extraction kinetics of ytterbium(Ⅲ) by 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester in the presence of isooctanol using a constant interfacial cell with laminar flow, Sep. Purif. Technol. 71(1) (2010) 50-55.[20] R.K. Biswas, M.G.K. Mondal, Kinetics of VO2+ extraction by D2EHPA, Hydrometallurgy 69(1) (2003) 117-133.[21] M.I. Saleh, M.F. Bari, M.S. Jab, B. Saad, Kinetics of lanthanum extraction from nitrateacetato medium by Cyanex 272 in toluene using the single drop technique, Hydrometallurgy 67(1) (2002) 45-52.[22] P.R. Danesi, R. Chiarizia, The kinetics of metal solvent extraction, CRC Crit. Rev. Anal. Chem. 10(1) (1980) 1-126.[23] H. Hou, J. Xu, Y. Wang, Solvent extraction performance of Pr (Ⅲ) from chloride acidic solution with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) by using membrane dispersion micro-extractor, Hydrometallurgy 156(10) (2015) 116-123.[24] D.S. Flett, J.A. Hartlage, D.R. Spink, D.N. Okuhara, The extraction of copper by an alkylated 8-hydroxy quinolone, J. Inorg. Nucl. Chem. 37(9) (1975) 1967-1971.[25] J.D. Miller, R.L. Atwood, Discussion of the kinetics of copper solvent extraction with hydroxy oximes, J. Inorg. Nucl. Chem. 37(12) (1975) 2539-2542.[26] P.R. Danesi, G.F. Vandegrift, Kinetics and mechanism of the interfacial mass transfer of europium(3+) and americium(3+) in the system bis(2-ethylhexyl) phosphaten-dodecane-sodium chloride-hydrochloric acid-water, J. Phys. Chem. 85(24) (1981) 3646-3651.[27] G.F. Vandegrift, E.P. Horwitz, The mechanism of interfacial mass transfer of calcium in the system:Di(2-ethylhexyl)phosphoric acid in dodecane-dilute nitric acid, J. Inorg. Nucl. Chem. 39(8) (1997) 1425-1432.[28] J.F. Yu, C. Ji, Interfacial chemistry and kinetics-controlled reaction mechanism of organophosphoric acid mixed extraction systems, Chem. J. Chin. Univ. 13(2) (1992) 224-226.[29] D.B. Wu, X.L. Wang, D.Q. Li, Extraction kinetics of Sc(Ⅲ), Y(Ⅲ), La(Ⅲ) and Gd(Ⅲ) from chloride medium by Cyanex 302 in heptane using the constant interfacial cell with laminar flow, Chem. Eng. Process. 46(1) (2007) 17-24. |