[1] F.L. Chan, A. Tanksale, Review of recent developments in Ni-based catalysts for biomass gasification, Renew. Sust. Energ. Rev. 38(2014) 428-438.[2] D. Li, M. Tamura, Y. Nakagawa, K. Tomishige, Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass, Bioresour. Technol. 178(2015) 53-64.[3] C.P.B. Quitete, R.C.P. Bittencourt, M.M.V.M. Souza, Steam reforming of tar using toluene as a model compound with nickel catalysts supported on hexaaluminates, Appl. Catal. A Gen. 478(20) (2014) 234-240.[4] H. de Lasa, E. Salaices, J. Mazumder, R. Lucky, Catalytic steam gasification of biomass:Catalysts, thermodynamics and kinetics, Chem. Rev. 111(9) (2011) 5404-5433.[5] P. McKendry, Energy production from biomass (part 3):Gasification technologies, Bioresour. Technol. 83(1) (2002) 55-63.[6] M. Koike, Y. Hisada, L. Wang, D. Li, H. Watanabe, Y. Nakagawa, K. Tomishige, High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen, Appl. Catal. B Environ. 140(2013) 652-662.[7] K. Polychronopoulou, K. Giannakopoulos, A.M. Efstathiou, Tailoring MgO-based supported Rh catalysts for purification of gas streams from phenol, Appl. Catal. B Environ. 111(2012) 360-375.[8] J. Ashok, Y. Kathiraser, M.L. Ang, S. Kawi, Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions, Appl. Catal. B Environ. 172(2015) 116-128.[9] Y. Shen, Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification, Renew. Sust. Energ. Rev. 43(2015) 281-295.[10] S.Y. Park, G. Oh, K. Kim, M.W. Seo, H.W. Ra, T.Y. Mun, J.G. Lee, S.J. Yoon, Deactivation characteristics of Ni and Ru catalysts in tar steam reforming, Renew. Energ. 105(2017) 76-83.[11] S. Anis, Z.A. Zainal, Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods:A review, Renew. Sust. Energ. Rev. 15(5) (2011) 2355-2377.[12] D. Wang, W. Yuan, W. Ji, Use of biomass hydrothermal conversion char as the Ni catalyst support in benzene and gasification tar removal, Trans. ASABE 53(3) (2010) 795-800.[13] Y. Shen, K. Yoshikawa, Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-A review, Renew. Sust. Energ. Rev. 21(2013) 371-392.[14] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering, Chem. Rev. 106(9) (2006) 4044-4098.[15] J. Ashok, S. Kawi, Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO-Al2O3 catalytic systems, Int. J. Hydrog. Energy 38(32) (2013) 13938-13949.[16] L.M. Zhou, T.R. Zhang, Z.L. Tao, J. Chen, Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane, Nano Res. 7(5) (2014) 774-781.[17] A. Shoaib, M.W. Ji, H.M. Qian, J.J. Liu, M. Xu, J.T. Zhang, Noble metal nanoclusters and their in situ calcination to nanocrystals:Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications, Nano Res. 9(6) (2016) 1763-1774.[18] M. Chareonpanich, Z.G. Zhang, A. Nishijima, A. Tomita, Effect of catalysts on yields of monocyclic aromatic hydrocarbons in hydrocracking of coal volatile matter, Fuel 74(10) (1995) 1636-1640.[19] S. Meesuk, J.P. Cao, K. Sato, Y. Ogawa, T. Takarada, The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst, J. Anal. Appl. Pyrolysis 94(2012) 238-245.[20] Z. Min, P. Yimsiri, M. Asadullah, S. Zhang, C.Z. Li, Catalytic reforming of tar during gasification. Part Ⅱ. Char as a catalyst or as a catalyst support for tar reforming, Fuel 90(7) (2011) 2545-2552.[21] S.R. Li, J.L. Gong, Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions, Chem. Soc. Rev. 43(21) (2014) 7245-7256.[22] D. Li, L. Zeng, X.Y. Li, X. Wang, H.Y. Ma, S. Assabumrungrat, J.L. Gong, Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B Environ. 176(2015) 532-541.[23] D. Li, X.Y. Li, J.L. Gong, Catalytic reforming of oxygenates:State of the art and future prospects, Chem. Rev. 116(19) (2016) 11529-11653.[24] H.Y. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X.Y. Li, J.L. Gong, Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts, Appl. Catal. B Environ. 181(2016) 321-331.[25] X.Y. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J.L. Gong, Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles, Appl. Catal. B Environ. 202(2017) 683-694.[26] J. Tao, C. Dong, Q. Lu, H. Liao, X. Du, Y. Yang, E. Dahlquist, Catalytic cracking of biomass high-temperature pyrolysis tar using NiO/AC catalysts, Int. J. Green Energy 12(8) (2015) 773-779.[27] A.E. Aksoylu, M. Madalena, A. Freitas, M.F.R. Pereira, J.L. Figueiredo, The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts, Carbon 39(2) (2001) 175-185.[28] S.X. Liu, X. Chen, X.Y. Chen, Z.F. Liu, H.L. Wang, Activated carbon with excellent chromium (VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater. 141(1) (2007) 315-319.[29] G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos, Effect of activated carbons modification on porosity, surface structure and phenol adsorption, J. Hazard. Mater. 151(2-3) (2008) 414-421.[30] T. Hou, L. Yuan, T. Ye, L. Gong, J. Tu, M. Yamamoto, Y. Torimoto, Q. Li, Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst, Int. J. Hydrog. Energy 34(22) (2009) 9095-9107.[31] M. Rashidi, A. Tavasoli, Hydrogen rich gas production via supercritical water gasification of sugarcane bagasse using unpromoted and copper promoted Ni/CNT nanocatalysts, J. Supercrit. Fluids 98(2015) 111-118.[32] M. Ruan, J. Guan, D. He, T. Meng, Q. Zhang, The hydrogenation of aromaticnaphthalene with Ni2P/CNTs, RSC Adv. 5(71) (2015) 57700-57703.[33] D.X. Zheng, J.L. Gong, C. Jin, P. Li, H.L. Bai, Exchange bias effect modulated anisotropic magnetoresistance in Fe/YMnO3 multiferroic bilayers, Mater. Lett. 156(2015) 125-128.[34] G.J. Yu, J.L. Gong, D.Z. Zhu, S.X. He, J.Q. Cao, Z.Y. Zhu, Efficient synthesis of carbon nanotubes over rare earth zeolites by thermal chemical vapor deposition at low temperature, Diam. Relat. Mater. 15(9) (2006) 1261-1265.[35] G. Wu, C. Zhang, S. Li, Z. Han, T. Wang, X. Ma, J.L. Gong, Hydrogen production via glycerol steam reforming over Ni/Al2O3:Influence of nickel precursors, ACS Sustain. Chem. Eng. 1(8) (2013) 1052-1062.[36] M. Zhou, H. Zhu, L. Niu, G. Xiao, R. Xiao, Catalytic hydroprocessing of furfural to cyclopentanol over Ni/CNTs catalysts:Model reaction for upgrading of bio-oil, Catal. Lett. 144(2) (2014) 235-241.[37] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Chemical treatment of carbon nanotubes, Carbon 34(1) (1996) 279-281.[38] C.H. Li, K.F. Yao, J. Liang, Influence of acid treatments on the activity of carbon nanotube-supported catalysts, Carbon 41(4) (2003) 858-860.[39] Y. Tian, S. Zhong, X. Zhu, A. Huang, Y. Chen, X. Wang, Mesoporous carbon spheres:Synthesis, surface modification and neutral red adsorption, Mater. Lett. 161(2015) 656-660.[40] Y. Zhai, Y. Dou, X. Liu, B. Tu, D. Zhao, One-pot synthesis of magnetically separable ordered mesoporous carbon, J. Mater. Chem. 19(2009) 3292-3300.[41] Y. Bang, S. Park, S.J. Han, J. Yoo, J.H. Song, J.H. Choi, K.H. Kang, I.K. Song, Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al2O3 catalyst prepared by an EDTA-assisted impregnation method, Appl. Catal. B Environ. 180(2016) 179-188.[42] S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofiber growth, Nature 427(2004) 426-429.[43] J.R.A. Sietsma, J.D. Meeldijk, M. Versluijs-Helder, A. Broersma, A. Jos Van Dillen, P.E. De Jongh, K.P. De Jong, Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts:Impregnation, drying, and thermal treatments, Chem. Mater. 20(9) (2008) 2921-2931.[44] J.R.A. Sietsma, J.D. Meeldijk, J.P. Breejen, M. Versluijs-Helder, A. Jos Van Dillen, P.E. De Jongh, K.P. De Jong, The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates, Angew. Chem. Int. Ed. 46(24) (2007) 4547-4549.[45] S.B. Ren, S. Zhou, P. Zhang, Z.C. Wang, Z.P. Lei, C.X. Pan, H.F. Shui, Highly dispersed Ni/SBA-15 catalysts prepared with different nickel salts as nickel precursors:Effects of activation atmospheres, J. Fuel Chem. Technol. 42(5) (2014) 591-596.[46] C. Hoang-Van, Y. Kachaya, S.J. Teichner, Y. Arnaud, J.A. Dalmon, Characterization of nickel catalysts by chemisorption techniques, X-ray diffraction and magnetic measurements:Effects of support, precursor and hydrogen pretreatment, Appl. Catal. 46(1989) 281-296.[47] W. Xu, Z. Liu, A.C. Johnston-Peck, S.D. Senanayake, G. Zhou, D.J. Stacchiola, E.A. Stach, J.A. Rodriguez, Steam reforming of ethanol on Ni/CeO2:Reaction pathway and interaction between Ni and the CeO2 support, ACS Catal. 3(5) (2013) 975-984.[48] Y. Sekine, D. Mukai, Y. Murai, S. Tochiya, Y. Izutsu, K. Sekiguchi, N. Hosomura, H. Arai, E. Kikuchi, Y. Sugiura, Steam reforming of toluene over perovskite-supported Ni catalysts, Appl. Catal. A Gen. 451(2013) 160-167.[49] M. Kong, Q. Yang, J. Fei, X. Zheng, Experimental study of Ni/MgO catalyst in carbon dioxide reforming of toluene, a model compound of tar from biomass gasification, Int. J. Hydrog. Energy 37(18) (2012) 13355-13364.[50] R. Zhang, H. Wang, X. Hou, Catalytic reforming of toluene as tar model compound:Effect of Ce and Ce-Mg promoter using Ni/olivine catalyst, Chemosphere 97(2014) 40-46.[51] U. Oemar, M.L. Ang, W.F. Hee, K. Hidajat, S. Kawi, Perovskite LaxM1-xNi0.8Fe0.2O3 catalyst for steam reforming of toluene:Crucial role of alkaline earth metal at low steam condition, Appl. Catal. B Environ. 148(2014) 231-242.[52] U. Oemar, M.L. Ang, Y.C. Chin, K. Hidajat, S. Kawi, Role of lattice oxygen in oxidative steam reforming of toluene as a tar model compound over Ni/La0.8Sr0.2AlO3 catalyst, Catal. Sci. Technol. 5(7) (2015) 3585-3597. |