[1] D.P. Harrison, Sorption-enhanced hydrogen production: A review, Ind. Eng. Chem. Res. 47 (2008) 6486-6501.[2] K. Liu, C.S. Song, V. Subramani, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, New Jersey, 2010.[3] A. Stanislaus, A. Marafi, M.S. Rana, Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catal. Today 153 (2010) 1-68.[4] A. Züttel, A. Borgschulte, L. Schlapbach, Hydrogen as a Future Energy Carrier,Wiley-VCH, Weinheim, 2008.[5] S.A. Bhat, J. Sadhukhan, Process intensification aspects for steam methane reforming: an overview, AICHE J. 55 (2009) 408-422.[6] J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Hydrogen and synthesis gas by steamand CO2 reforming, Adv. Catal. 47 (2002) 65-139.[7] P. Van Beurden, On the catalytic aspects of steam-methane reforming, Energy Research Center of the Netherlands, 2004. 1-27 (ECN-I-04-003).[8] J.R. Rostrup-Nielsen, Steam reforming, in: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, 2nd ed.Wiley-VCH, Weinheim, 2008, pp. 2882-2905.[9] M.H. Halabi, M.H.J.M. De Croon, J. Van der Schaaf, P.D. Cobden, J.C. Schouten, Low temperature catalyticmethane steam reforming over ceria-zirconia supported rhodium, Appl. Catal. A Gen. 389 (2010) 68-79.[10] D. Chen, R. Lødeng, H. Svendsen, A. Holmen, Hierarchically multiscale modeling of methane steam reforming reactions, Ind. Eng. Chem. Res. 50 (2011) 2600-2612.[11] M. Zeppieri, P.L. Villa, N. Verdone, M. Scarsella, P. De Filippis, Kinetic of methane steam reforming reaction over nickel-and rhodium-based catalysts, Appl. Catal. A Gen. 387 (2010) 147-154.[12] K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming, Appl. Catal. A Gen. 314 (2006) 9-22.[13] K. Takehira, ‘Intelligent' reforming catalysts: Trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites, J. Nat. Gas Chem. 18 (2009) 237-259.[14] F. Basile, A. Vaccari, Application of hydrotalcite-type anionic clays (layered double hydroxides) in catalysis, in: V. Rives (Ed.), Layered Doubled Hydroxides: Present and Future, Nova Science, New York, 2001, pp. 285-321.[15] K. Takehira, T. Shishido, P. Wang, T. Kosaka, K. Takaki, Steam reforming of CH4 over supported Ni catalysts prepared from a Mg-Al hydrotalcite-like anionic clay, Phys. Chem. Chem. Phys. 5 (2003) 3801-3810.[16] A. Fonseca, E.M. Assaf, Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors, J. Power Sources 142 (2005) 154-159.[17] E. Ochoa-Fernández, C. Lacalle-Vilà, K.O. Christensen, J.C. Walmsley, M. Rønning, A. Holmen, D. Chen, Ni catalysts for sorption enhanced steam methane reforming, Top. Catal. 45 (2007) 3-8.[18] F. Basile, P. Benito, G. Fornasari, A. Vaccari, Hydrotalcite-type precursors of active catalysts for hydrogen production, Appl. Clay Sci. 48 (2010) 250-259.[19] T. Shishido, P. Wang, T. Kosaka, K. Takehira, Steamreforming of CH4 over Ni/Mg-Al catalyst prepared by spc-method from hydrotalcite, Chem. Lett. 31 (2002) 752-753.[20] D.L. Li, I. Atake, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Self-regenerative activity of Ni/Mg(Al)O catalysts with trace Ru during daily start-up and shut-down operation of CH4 steam reforming, J. Catal. 250 (2007) 299-312.[21] M.M. Xie, Z.M. Zhou, Y. Qi, Z.M. Cheng, W.K. Yuan, Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent, Chem. Eng. J. 207-208 (2012) 142-150.[22] C. Perego, S. Peratello, Experimental methods in catalytic kinetics, Catal. Today 52 (1999) 133-145.[23] J.G. Xu, G.F. Froment,Methane steamreforming, methanation and water-gas shift: I. Intrinsic kinetics, AICHE J. 35 (1989) 88-96.[24] K.H. Hou, R. Hughes, The kinetics of methane steam reforming over a Ni/α-Al2O3 catalyst, Chem. Eng. J. 82 (2001) 311-328.[25] E.L.G. Oliveira, C.A. Grande, A.E. Rodrigues, Steam methane reforming in a Ni/Al2O3 catalyst: kinetics and diffusional limitations in extrudates, Can. J. Chem. Eng. 87 (2009) 945-956.[26] D.L. Hoang, S.H. Chan, O.L. Ding, Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support, Chem. Eng. J. 112 (2005) 1-11.[27] E.L.G. Oliveira, C.A. Grande, A.E. Rodrigues, Methane steam reforming in large pore catalyst, Chem. Eng. Sci. 65 (2010) 1539-1550.[28] M.H. Halabi, M.H.J.M. De Croon, J. Van der Schaaf, P.D. Cobden, J.C. Schouten, Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeαZr1-αO2 catalyst, Appl. Catal. A Gen. 389 (2010) 80-91.[29] H.H. Rosenbrock, C. Storey, Computational Techniques for Chemical Engineers, Pergamon, New York, 1966.[30] J.W. Thybaut, M. Saeys, G.B. Marin, Hydrogenation kinetics of toluene on Pt/ZSM-22, Chem. Eng. J. 90 (2002) 117-129.[31] Z.M. Zhou, T.Y. Zeng, Z.M. Cheng,W.K. Yuan, Kinetics of selective hydrogenation of pyrolysis gasoline over an egg-shell catalyst, Chem. Eng. Sci. 65 (2010) 1832-1839.[32] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.[33] K. Takehira, T. Shishido, P. Wang, T. Kosaka, K. Takaki, Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay, J. Catal. 221 (2004) 43-54.[34] Q. Wang, H.H. Tay, Z.H. Guo, L.W. Chen, Y. Liu, J. Chang, Z.Y. Zhong, J.Z. Luo, A. Borgna, Morphology and composition controllable synthesis of Mg-Al-CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity, Appl. Clay Sci. 55 (2012) 18-26.[35] K. Schulze, W. Makowski, R. Chy?y, R. Dziembaj, G. Geismar, Nickel doped hydrotalcites as catalyst precursors for the partial oxidation of light paraffins, Appl. Clay Sci. 18 (2001) 59-69.[36] F. Basile, L. Basini, M.D. Amore, G. Fornasari, A. Guarinoni, D.Matteuzzi, G. Del Piero, F. Trifirò, A. Vaccari, Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane, J. Catal. 173 (1998) 247-256.[37] F. Melo, N. Morlanés, Synthesis, characterization and catalytic behaviour of NiMgAl mixed oxides as catalysts for hydrogen production by naphtha steam reforming, Catal. Today 133-135 (2008) 383-393.[38] M. Boudart, D.E. Mears, M.A. Vannice, Kinetics of heterogeneous catalytic reactions, Ind. Chim. Belge 32 (1967) 281-284. |