Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (5): 1119-1131.DOI: 10.1016/j.cjche.2017.10.025
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
S. Chauhan, Vivek Sharma, Maninder Kaur, Poonam Chaudhary
Received:
2017-07-26
Revised:
2017-09-20
Online:
2018-06-29
Published:
2018-05-28
Contact:
S.Chauhan,E-mail address:scschauhan19@gmail.com
S. Chauhan, Vivek Sharma, Maninder Kaur, Poonam Chaudhary
通讯作者:
S.Chauhan,E-mail address:scschauhan19@gmail.com
S. Chauhan, Vivek Sharma, Maninder Kaur, Poonam Chaudhary. Temperature-dependent aggregation of bio-surfactants in aqueous solutions of galactose and lactose: Volumetric and viscometric approach[J]. Chin.J.Chem.Eng., 2018, 26(5): 1119-1131.
S. Chauhan, Vivek Sharma, Maninder Kaur, Poonam Chaudhary. Temperature-dependent aggregation of bio-surfactants in aqueous solutions of galactose and lactose: Volumetric and viscometric approach[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1119-1131.
[1] J.M. Valderrama, P. Wilde, A. Macierzanka, A. Mackie, The role of bile salts in digestion, Adv. Colloid Interf. Sci. 165(2011) 36-46. [2] B. De Castro, P.G. Ameiro, C. Guimaraes, J. Lima, S. Reis, Study of partition of nitrazepam in bile salt micelles and the role of lecithin, J. Pharm. Biomed. Anal. 24(2001) 595-602. [3] T.S. Wiedmann, L. Kamel, Examination of the solubilization of drugs by bile salt micelles, J. Pharm. Sci. 9(2002) 1743-1764. [4] R. Ninomiya, K. Matsuoka, Y. Moroi, Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:comparison with other unconjugated bile salts, Biochem. Biophys. Acta 1634(2003) 116-125. [5] C.L. Bowe, L. Mokhtarzadeh, P.N. Venkatesen, S. Babu, H. Axelrod, M.J. Sofia, R. Kakarla, T.Y. Chan, J.S. Kim, H.J. Lee, G.L. Amidon, S.Y. Choe, S. Walker, D. Kahne, Design of compounds that increase the absorption of polar molecules, Proc. Natl. Acad. Sci. U. S. A. 94(1997) 12218-12223. [6] G.S. Gordon, A.C. Moses, R.D. Silver, J.R. Flier, M.C. Carey, Nasal absorption of insulin:enhancement by hydrophobic bile salts, Proc. Natl. Acad. Sci. U. S. A. 82(1985) 7419-7423. [7] D. Madenci, S.U. Egelhaaf, Self-assembly in aqueous bile salt solutions, Curr. Opin. Colloid Interface Sci. 15(2010) 109-115. [8] Y.S. Elnaggar, Multifaceted applications of bile salts in pharmacy:an emphasis on nanomedicine, Int. J. Nanomedicine 10(2015) 3955-3971. [9] J. Li, X. Wang, T. Zhang, C. Wang, Z. Huang, X. Luo, Y. Deng, A review on phospholipids and their main applications in drug delivery systems, Asian J. Pharm. Sci. 10(2015) 81-98. [10] B.C. Herold, R. Kirkpatrick, D. Marcellino, A. Travelstead, V. Pilipenko, H. Krasa, J. Bremer, L.J. Dong, M.D. Cooper, Bile salts:natural detergents for the prevon of sexually transmitted diseases, Antimicrob. Agents Chemother. 43(1999) 745-751. [11] P.K. Banipal, N. Aggarwal, T.S. Banipal, Study on interactions of saccharides and their derivatives with potassium phosphate monobasic (1:1 electrolyte) in aqueous solutions at different temperatures, J. Mol. Liq. 196(2014) 291-299. [12] S. Nithiyanantham, L. Palaniappan, Ultrasonic study on some monosaccharides in aqueous media at 298.15 K, Arab. J. Chem. 5(2012) 25-30. [13] T.C. Bai, G.B. Yan, Viscosity B-coefficients and activation parameters for viscous flow of a solution of heptanedioic acid in aqueous sucrose solution, Carbohydr. Res. 338(2003) 2921-2927. [14] A. Ali, P. Bidhuri, N.A. Malik, S. Uzair, Density, viscosity, and refractive index of mono-, di-, and tri-saccharides in aqueous glycine solutions at different temperatures, Arab. J. Chem. (2014), https://doi.org/10.1016/j.arabjc.2014.08.027. [15] D.M. Cirin, M.M. Posa, V.S. Krstonosic, Interactions between sodium cholate or sodium Deoxycholate and nonionic surfactant (tween 20 or tween 60) in aqueous solution, Ind. Eng. Chem. Res. 51(2012) 3670-3676. [16] C.W. Njauw, C.Y. Cheng, V.A. Ivanov, A.R. Khokhlov, S.H. Tung, Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization, Langmuir 29(2013) 3879-3888. [17] D. Madenci, A. Salonen, P. Schurtenberger, J.S. Pedersen, S.U. Egelhaaf, Simple model for the growth behaviour of mixed lecithin-bile salt micelles, Phys. Chem. Chem. Phys. 13(2011) 3171-3178. [18] N. Funasaki, M. Fukuba, T. Hattori, S. Ishikawa, T. Okunoa, S. Hirota, Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy, Chem. Phys. Lipids 142(2006) 43-57. [19] K. Kumar, S. Chauhan, Surface tension and UV-visible investigations of aggregation and adsorption behavior of NaC and NaDC in water-amino acid mixtures, Fluid Phase Equilib. 394(2015) 165-174. [20] K. Manna, C.H. Chang, A.K. Panda, Physicochemical studies on the catanionics of alkyltrimethylammonium bromides and bile salts in aqueous media, Colloids Surf. A Physicochem. Eng. Asp. 415(2012) 10-21. [21] G.G. Gaitano, A. Compostizo, L.S. Martin, G. Tardojas, Speed of sound, density, and molecular modeling studies on the inclusion complex between sodium cholate and β-cyclodextrin, Langmuir 13(1997) 2235-2241. [22] K. Kumar, B.S. Patial, S. Chauhan, Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures:effect of selected amino acids, J. Chem. Thermodyn. 82(2016) 25-33. [23] A.P. Davis, R.S. Wareham, Carbohydrate recognition through noncovalent interactions:a challenge for biomimetic and supramolecular chemistry, Angew. Chem. Int. Ed. 38(1999) 2978-2996. [24] P. Venkatesan, Y. Cheng, D. Kahne, Hydrogen bonding in micelle formation, J. Am. Chem. Soc. 116(1994) 6955-6956. [25] S. Chauhan, V. Sharma, K. Singh, M.S. Chauhan, K. Singh, Influence of lactose on the micellar behaviour and surface activity of bile salts as revealed through fluorescence and surface tension studies at varying temperatures, J. Mol. Liq. 222(2016) 67-76. [26] S. Chauhan, K. Singh, K. Kumar, S.C. Neelakantan, G. Kumar, Drug-amino acid interactions in aqueous medium:volumetric, compressibility, and viscometric studies, J. Chem. Eng. Data 61(2016) 788-796. [27] S. Chauhan, K. Sharma, D.S. Rana, G. Kumar, A. Umar, Volumetric and conductance studies of cetyltrimethyl ammonium bromide in aqueous glycine, J. Solut. Chem. 42(2013) 634-656. [28] V. Bhardwaj, P. Sharma, M.N. Noolvib, H.M. Patel, S. Chauhan, M.S. Chauhan, K. Sharma, Thermo-physical examination:synthesized2-furano-4(3H)-quinazolinone and open quinazolinone (diamide) anticancer analogs with sodium dodecyl sulphate, Thermochim. Acta 573(2013) 65-72. [29] M. Das, S. Das, A.K. Pattanaik, Acoustical behaviour of sodium nitroprusside in aquoorganic solvent media at 308.15 K, J. Chem. (2013), https://doi.org/10.1155/2013/942430. [30] S. Chauhan, M. Kaur, D.S. Rana, M.S. Chauhan, Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts, J. Chem. Eng. Data 61(2016) 3770-3778. [31] I. Bahadur, N. Deenadayalu, Apparent molar volume and apparent molar isentropic compressibility for the binary systems {methyltrioctyl ammonium bis (trifluoromethylsulfonyl) imide + ethyl acetate or ethanol} at different temperatures under atmospheric pressure, Thermochim. Acta 566(2013) 77-83. [32] T.S. Banipal, D. Kaur, P.K. Banipal, G. Singh, Thermodynamic and transport properties of L-serine and L-threonine in aqueous sodium acetate and magnesium acetate solutions at T=298.15 K, J. Chem. Thermodyn. 39(2007) 371-384. [33] J. Singh, T. Kaur, V. Ali, D.S. Gill, Ultrasonic velocities and isentropic compressibilities of some tetraalkylammonium and copper (I) salts in acetonitrile and benzonitrile, J. Chem. Soc. Faraday Trans. 90(1994) 579-582. [34] T. Banerjee, N. Kishore, Interactions of some amino acids with aqueous tetraethylammonium bromide at 298.15 K:a volumetric approach, J. Solut. Chem. 34(2005) 137-153. [35] R. Sadeghi, S. Shahabi, A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly (ethylene glycol) in aqueous solutions, J. Chem. Thermodyn. 43(2011) 1361-1370. [36] T. Mehrian, A. De Keizer, A. Korteweg, J. Lyklema, Thermodynamics of micellization of n-alkylpyridinium chlorides, Colloids Surf. A Physicochem. Eng. Asp. 71(1993) 255-267. [37] S. Chauhan, L. Pathania, K. Sharma, G. Kumar, Volumetric, acoustical and viscometric behavior of glycine and DL-alanine in aqueous furosemide solutions at different temperatures, J. Mol. Liq. 212(2015) 656-664. [38] H. Kumar, K. Kaur, Investigation on molecular interaction of amino acids in antibacterial drug ampicillin solutions with reference to volumetric and compressibility measurements, J. Mol. Liq. 173(2012) 130-136. [39] D.D. Miller, W. Lenhart, B.J. Williams, J.H. Hewitt, The use of NMR to study sodium dodecyl sulfate-gelatin interactions, Langmuir 10(1994) 68-71. [40] K. Sharma, S. Chauhan, Apparent molar volume, compressibility and viscometric studies of sodium dodecyl benzene sulfonate (SDBS) and dodecyltrimethylammonium bromide (DTAB) in aqueous amino acid solutions:a thermo-acoustic approach, Thermochim. Acta 578(2014) 15-27. [41] D. Kaushal, D.S. Rana, S. Chauhan, Effect of furosemide on denaturation of lysozyme in the presence of ionic surfactant at different temperatures, Fluid Phase Equilib. 360(2013) 239-247. [42] V.K. Syal, A. Chauhan, S. Chauhan, Ultrasonic velocity, viscosity and density studies of poly (ethylene glycols) (PEG-8,000, PEG-20,000) in acetonitrile (AN) and water (H2O) mixtures at 250C, J. Pure Appl. Ultrason. 27(2005) 61-69. [43] S. Chauhan, P. Chaudhary, K. Sharma, K. Kumar Kiran, Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug, Chem. Pap. 67(2013) 1442-1452. [44] R. Kameswari, G. Giridhar, M. Rangacharyulu, Density and ultrasonic studies on sunflower oil, IJESAT 5(2015) 465-473. [45] S. Thirumaran, Deepesh George, Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures, ARPN J. Eng. Appl. Sci. 4(2009) 1-11. [46] A.B. Naik, Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures, Indian J. Pure Appl. Phys. 53(2015) 27-34. [47] R. Kumar, R. Mahesh, B. Shanmugapriyan, V. Kannappan, Volumetric, viscometric, acoustic and refractometric studies of molecular interactions in certain binary systems of o-chlorophenol at 303.15 K, Indian J. Pure Appl. Phys. 50(2012) 633-640. |
[1] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[2] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[3] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[4] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[5] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[6] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[7] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 130-139. |
[8] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
[9] | Yaqi Ren, Shuqian Xia. Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 58-67. |
[10] | Anil Kumar Nain. Study of intermolecular interactions in binary mixtures of methyl acrylate with benzene and methyl substituted benzenes at different temperatures: An experimental and theoretical approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 212-238. |
[11] | Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352. |
[12] | Li Ma, Yongjin Cui, Lin Sheng, Chencan Du, Jian Deng, Guangsheng Luo. Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 210-218. |
[13] | Qingjun Zhang, Pengyuan Shi, Xigang Yuan, Youguang Ma, Aiwu Zeng. Direct carboxylation of thiophene with CO2 in the solvent-free carboxylate-carbonate molten medium: Experimental and mechanistic insights [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 264-282. |
[14] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
[15] | Jipeng Li, Huan Xu, Jingqi Wang, Yujun Wang, Diannan Lu, Jichang Liu, Jianzhong Wu. Theoretical insights on the hydration of quinones as catholytes in aqueous redox flow batteries [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 72-78. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1002
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||