Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (9): 1773-1784.DOI: 10.1016/j.cjche.2017.11.012
Jingcai Cheng1, Qian Li1,2, Chao Yang1,2, Yongqiang Zhang3, Zaisha Mao1
Received:
2017-05-10
Revised:
2017-11-10
Online:
2018-10-17
Published:
2018-09-28
Contact:
Chao Yang,E-mail address:chaoyang@ipe.ac.cnd:\PDF\.pdf
Supported by:
Supported by the National Key Research and Development Program (2016YFB0301702), National Natural Science Foundation of China (21776284, 21476236), Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-JSC030), and Jiangsu National Synergetic Innovation Center for Advanced Materials.
Jingcai Cheng1, Qian Li1,2, Chao Yang1,2, Yongqiang Zhang3, Zaisha Mao1
通讯作者:
Chao Yang,E-mail address:chaoyang@ipe.ac.cn
基金资助:
Supported by the National Key Research and Development Program (2016YFB0301702), National Natural Science Foundation of China (21776284, 21476236), Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-JSC030), and Jiangsu National Synergetic Innovation Center for Advanced Materials.
Jingcai Cheng, Qian Li, Chao Yang, Yongqiang Zhang, Zaisha Mao. CFD-PBE simulation of a bubble column in OpenFOAM[J]. Chin.J.Chem.Eng., 2018, 26(9): 1773-1784.
Jingcai Cheng, Qian Li, Chao Yang, Yongqiang Zhang, Zaisha Mao. CFD-PBE simulation of a bubble column in OpenFOAM[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1773-1784.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.11.012
[1] G. Montoya, D. Lucas, E. Baglietto, Y.X. Liao, A review on mechanisms and models for the churn-turbulent flow regime, Chem. Eng. Sci. 141(2016) 86-103.[2] J.B. Joshi, Computational flow modelling and design of bubble column reactors, Chem. Eng. Sci. 56(21-22) (2001) 5893-5933.[3] Y.Y. Bao, B.J. Wang, M.L. Lin, Z.M. Gao, J. Yang, Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(6) (2015) 890-896.[4] A. Sokolichin, G. Eigenberger, A. Lapin, Simulation of buoyancy driven bubbly flow:Established simplifications and open questions, AICHE J. 50(1) (2004)24-45.[5] T. Wang, J. Wang, Y. Jin, A CFD-PBM coupled model for gas-liquid flows, AICHE J. 52(1) (2006) 125-140.[6] Q.G. Wang, W. Yao, Computation and validation of the interphase force models for bubbly flow, Int. J. Heat Mass Transf. 98(2016) 799-813.[7] R. Bannari, F. Kerdouss, B. Selma, A. Bannari, P. Proulx, Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns, Comput. Chem. Eng. 32(12) (2008) 3224-3237.[8] R. Rzehak, S. Kriebitzsch, Multiphase CFD-simulation of bubbly pipe flow:A code comparison, Int. J. Multiphase Flow 68(2015) 135-152.[9] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12(6) (1998) 620-631.[10] H. Jasak, H.G. Weller, A.D. Gosman, High resolution NVD differencing scheme for arbitrarilly unstructured meshes, Int. J. Numer. Methods Fluids 31(1999) 431-449.[11] H. Rusche, Computational Fluid Dynamics of Dispersed Two-phase Flows at High Phase Fractions, PhD Thesis, Imperial College, University of London, 2002.[12] L.F.L.R. Silva, R.B. Damian, P.L.C. Lage, Implementation and analysis of numerical solution of the population balance equation in CFD packages, Comput. Chem. Eng. 32(2008)2933-2945.[13] B. Selma, R. Bannari, P. Proulx, Simulation of bubbly flows:Comparison between direct quadrature method of moments (DQMOM) and method of classes (CM), Chem. Eng. Sci. 65(2010) 1925-1941.[14] P. Renze, A. Buffo, D.L. Marchisio, M. Vanni, Simulation of coalescence, breakup, and mass transfer in polydisperse multiphase flows, Chem. Ing. Tech. 86(7) (2014) 1088-1098.[15] Y.F. Liu, O. Hinrichsen, Study on CFD-PBM turbulence closures based on k-epsilon and Reynolds stress models for heterogeneous bubble column flows, Comput. Fluids 105(2014) 91-100.[16] C. Pena-Monferrer, A. Passalacqua, S. Chiva, J.L. Munoz-Cobo, CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments, Nucl. Eng. Des. 301(2016) 320-332.[17] A. Buffo, M. Vanni, P. Renze, D.L. Marchisio, Empirical drag closure for polydisperse gas-liquid systems in bubbly flow regime:Bubble swarm and micro-scale turbulence, Chem. Eng. Res. Des. 113(2016)284-303.[18] H. Marschall, R. Mornhinweg, A. Kossmann, S. Oberhauser, K. Langbein, O. Hinrichsen, Numerical simulation of dispersed gas/liquid flows in bubble columns at high phase fractions using OpenFOAM (R) part I-Modeling basics, Chem. Eng. Technol. 34(8) (2011) 1311-1320.[19] H. Marschall, R. Mornhinweg, A. Kossmann, S. Oberhauser, K. Langbein, O. Hinrichsen, Numerical simulation of dispersed gas/liquid flows in bubble columns at high phase fractions using OpenFOAM (R) part Ⅱ-Numerical simulations and results, Chem. Eng. Technol. 34(8) (2011) 1321-1327.[20] R. McGraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol. 27(2) (1997)255-265.[21] D.L. Marchisio, R.D. Vigil, R.O. Fox, Quadrature method of moments for aggregationbreakage processes, J. Colloid Interface Sci. 258(2) (2003) 322-334.[22] S. Kumar, D. Ramkrishna, On the solution of population balance by discretization I. A fixed pivot technique, Chem. Eng. Sci. 51(1996) 1311-1332.[23] A. Passalacqua, R.O. Fox, Implementation of an iterative solution procedure for multi-fluid gas-particle flow models on unstructured grids, Powder Technol. 213(1-3) (2011) 174-187.[24] R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 93(2) (1991) 388-410.[25] S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Series on Computational Methods in Mechanics and Thermal Science), Taylor & Francis, 1980.[26] J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, L. Morl, Improved accuracy and convergence of discretized population balance for aggregation:The cell average technique, Chem. Eng. Sci. 61(10) (2006) 3327-3342.[27] M. Ishii, Thermo-fluid Dynamic Theory of Two-phase Flow, Eyrolles, Paris, 1975.[28] P.J. Oliveira, R.I. Issa, Numerical aspects of an algorithm for the Eulerian simulation of two-phase flows, Int. J. Numer. Methods Fluids 43(2003) 1177-1198.[29] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, London, 1978.[30] A. Tomiyama, G.P. Celata, S. Hosokawa, S. Yoshida, Terminal velocity of single bubbles in surface tension force dominant regime, Int. J. Multiphase Flow 28(2002) 1497-1519.[31] M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AICHE J. 25(1979) 842-855.[32] R.T. Lahey, The analysis of phase-separation and phase distribution phenomena using 2-fluid models, Nucl. Eng. Des. 122(1-3) (1990) 17-40.[33] T.R. Auton, The lift force on a spherical body in a rotational flow, J. Fluid Mech. 183(1987) 199-218.[34] H.A. Jakobsen, H. Lindborg, C.A. Dorao, Modeling of bubble column reactors:Progress and limitations, Ind. Eng. Chem. Res. 44(14) (2005) 5107-5151.[35] A. Gupta, S. Roy, Euler-Euler simulation of bubbly flow in a rectangular bubble column:Experimental validation with radioactive particle tracking, Chem. Eng. J. 225(2013) 818-836.[36] N. Boisson, M.R. Malin, Numerical prediction of two-phase flow in bubble columns, Int. J. Numer. Methods Fluids 23(12) (1996) 1289-1310.[37] J. Grienberger, H. Hofmann, Investigations and modeling of bubble-columns, Chem. Eng. Sci. 47(9-11) (1992)2215-2220.[38] H.A. Jakobsen, B.H. Sannaes, S. Grevskott, H.F. Svendsen, Modeling of vertical bubble-driven flows, Ind. Eng. Chem. Res. 36(10) (1997) 4052-4074.[39] H.F. Svendsen, H.A. Jakobsen, R. Torvik, Local flow structures in internal loop and bubble column reactors, Chem. Eng. Sci. 47(13-14) (1992) 3297-3304.[40] A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Transverse migration of single bubbles in simple shear flows, Chem. Eng. Sci. 57(11) (2002) 1849-1858.[41] T. Frank, J.M. Shi, A.D. Burns, Validation of Eulerian multiphase flow models for nuclear safety application, Proceedings of the 3rd International Symposium on Twophase Flow Modelling and Experimentation, Pisa, Italy, 2004.[42] A. Tomiyama, Struggle with computational bubble dynamics, Multiphase Sci. Technol. 10(4) (1998) 369-405.[43] H.A. Jakobsen, Phase distribution phenomena in two-phase bubble column reactors, Chem. Eng. Sci. 56(3) (2001) 1049-1056.[44] M.A. Lopez de Bertodano, Two fluid model for two-phase turbulent jets, Nucl. Eng. Des. 179(1) (1998) 65-74.[45] K. Ekambara, K. Nandakumar, J.B. Joshi, CFD simulation of bubble column reactor using population balance, Ind. Eng. Chem. Res. 47(21) (2008) 8505-8516.[46] T.F. Wang, J.F. Wang, Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model, Chem. Eng. Sci. 62(24) (2007) 7107-7118.[47] A.D. Burns, T. Frank, I. Hamill, J.M. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, Proceedings of 5th International Conference on Multiphase Flow, ICMF'04, Yokohama, Japan, May 30-June 4, 2004 Paper No. 392.[48] A. Larue de Tournemine, V. Roig, C. Suzanne, Experimental study of the turbulence in bubbly flows at high void fraction, in:E.E. Michaelides, et al., (Eds.), Proceedings of The Fourth International Conference on Multiphase Flow, New Orleans, LA, USA, May 27-June 1, 2001.[49] C. Garnier, M. Lance, J.L. Marie, Measurements of local flow characteristics in buoyancy-driven bubbly flow at high void fraction, in:E.E. Michaelides, et al., (Eds.), Proceedings of the Fourth International Conference on Multiphase Flow, New Orleans, LA, USA, May 27-June 1, 2001.[50] A. Behzadi, R.I. Issa, H. Rusche, Modelling of dispersed bubble and droplet flow at high phase fraction, Chem. Eng. Sci. 59(2004) 759-770.[51] D.P. Hill, The Computer Simulation of Dispersed Two-phase Flows, PhD Thesis, Imperial College, University of London, 1998.[52] S.L. Lee, R.T. Lahey, O.C. Jones, The prediction of two-phase turbulence and phase distribution phenomena using a K-κ model, Jpn. J. Multiphase Flow 3(4) (1989) 335-368.[53] V.V. Ranade, H.E.A. van-den-Akker, A computational snapshot of gas liquid flow in baffled stirred reactors, Chem. Eng. Sci. 49(1994) 5175-5192.[54] R. Rzehak, E. Krepper, Bubble-induced turbulence:Comparison of CFD models, Nucl. Eng. Des. 258(2013) 57-65.[55] Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiphase Flow 2(1) (1975) 79-95.[56] Y. Sato, M. Sadatomi, K. Sekoguchi, Momentum and heat-transfer in 2-phase bubble flow. 1. Theory, Int. J. Multiphase Flow 7(2) (1981) 167-177.[57] M.R. Malin, B. Spalding, A two-fluid model of turbulence and its application to heated plane jets and wakes, PCH Physicochem. Hydrodyn. 5(5/6) (1984) 339-362.[58] M.R. Davidson, Numerical calculations of two-phase flow in a liquid bath with bottom gas injection:The central plume, Appl. Math. Model. 14(1990) 67-76.[59] J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation, Powder Technol. 182(1) (2008) 81-104.[60] M.J. Prince, H.W. Blanch, Bubble coalescence and break-up in air-sparged bubblecolumns, AICHE J. 36(10) (1990) 1485-1499.[61] F. Lehr, M. Millies, D. Mewes, Bubble-size distributions and flow fields in bubble columns, AICHE J. 48(11) (2002)2426-2443.[62] M.R. Bhole, S. Roy, J.B. Joshi, Laser Doppler anemometer measurements in bubble column:Effect of sparger, Ind. Eng. Chem. Res. 45(26) (2006) 9201-9207.[63] D. Li, Z. Gao, A. Buffo, W. Podgorska, D.L. Marchisio, Droplet breakage and coalescence in liquid-liquid dispersions:Comparison of different kernels with EQMOM and QMOM, AICHE J. 63(6) (2017)2293-2311.[64] Z. Gao, D. Li, A. Buffo, W. Podgórska, D.L. Marchisio, Simulation of droplet breakage in turbulent liquid-liquid dispersions with CFD-PBM:Comparison of breakage kernels, Chem. Eng. Sci. 142(2016)277-288.[65] P. Chen, J. Sanyal, M.P. Dudukovic, CFD modeling of bubble columns flows:Implementation of population balance, Chem. Eng. Sci. 59(2004) 5201-5207.[66] P. Chen, M.P. Dudukovic, J. Sanyal, Three-dimensional simulation of bubble column flows with bubble coalescence and breakup, AICHE J. 51(3) (2005) 696-712.[67] T.F. Wang, J.F. Wang, Y. Jin, Population balance model for gas-liquid flows:Influence of bubble coalescence and breakup models, Ind. Eng. Chem. Res. 44(19) (2005) 7540-7549.[68] E. Olmos, C. Gentric, C. Vial, G. Wild, N. Midoux, Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up, Chem. Eng. Sci. 56(21-22) (2001) 6359-6365. |
[1] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[2] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[3] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[4] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[5] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[6] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[7] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[8] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
[9] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
[10] | Shidong Xue, Jingkun Han, Xi Xi, Junyi Zhao, Zhong Lan, Rongfu Wen, Xuehu Ma. Rapid velocity reduction and drift potential assessment of off-nozzle pesticide droplets [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 243-254. |
[11] | Yongjun Wu, Pan You, Peicheng Luo. Effect of pitched short blades on the flow characteristics in a stirred tank with long-short blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 143-152. |
[12] | He Yang, Aqiang Chen, Shujun Geng, Jingcai Cheng, Fei Gao, Qingshan Huang, Chao Yang. Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 51-71. |
[13] | Anshi Hong, Zisheng Zhang, Xingang Li, Xin Gao. A generalized CFD model for evaluating catalytic separation process in structured porous materials [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 168-177. |
[14] | Jiachen Liu, Xiaoping Guan, Ning Yang. Exploration on the stability conditions in bubble columns by noncooperative game theory [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 75-84. |
[15] | Yanyan Liu, Chaoqun Yao, Guangwen Chen. Gas-liquid-liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 85-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||