Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 51-71.DOI: 10.1016/j.cjche.2021.03.045
Previous Articles Next Articles
He Yang1,2,5, Aqiang Chen1,2,3, Shujun Geng1,2,3, Jingcai Cheng2,4,5, Fei Gao6, Qingshan Huang1,2,3,4,5, Chao Yang1,2,3,4,5
Received:
2020-10-24
Revised:
2021-03-05
Online:
2022-06-18
Published:
2022-04-28
Contact:
Qingshan Huang,E-mail:huangqs@qibebt.ac.cn;Chao Yang,E-mail:chaoyang@ipe.ac.cn
Supported by:
He Yang1,2,5, Aqiang Chen1,2,3, Shujun Geng1,2,3, Jingcai Cheng2,4,5, Fei Gao6, Qingshan Huang1,2,3,4,5, Chao Yang1,2,3,4,5
通讯作者:
Qingshan Huang,E-mail:huangqs@qibebt.ac.cn;Chao Yang,E-mail:chaoyang@ipe.ac.cn
基金资助:
He Yang, Aqiang Chen, Shujun Geng, Jingcai Cheng, Fei Gao, Qingshan Huang, Chao Yang. Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 51-71.
He Yang, Aqiang Chen, Shujun Geng, Jingcai Cheng, Fei Gao, Qingshan Huang, Chao Yang. Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors[J]. 中国化学工程学报, 2022, 44(4): 51-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.03.045
[1] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes:A review, Ind. Eng. Chem. Res. 46 (18) (2007) 5824-5847 [2] Y.X. Guo, M.N. Rathor, H.C. Ti, Hydrodynamics and mass transfer studies in a novel external-loop airlift reactor, Chem. Eng. J. 67 (3) (1997) 205-214 [3] J. Lin, M.H. Han, T.F. Wang, T.W. Zhang, J.F. Wang, Y. Jin, Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor, Chem. Eng. J. 102 (1) (2004) 51-59. [4] J.P. Wen, P. Lei Han Wei, L.P. Du, G.Z. Mao, The denitrification of nitrate contained wastewater in a gas-liquid-solid three-phase flow airlift loop bioreactor, Biochem. Eng. J. 15 (2) (2003) 153-157 [5] Z. Al-Qodah, W. Lafi, Modeling of antibiotics production in magneto three-phase airlift fermenter, Biochem Eng J 7 (1) (2001) 7-16 [6] Q.S. Huang, T.Z. Liu, J. Yang, L.S. Yao, L.L. Gao, Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors, Chem. Eng. Sci. 66 (17) (2011) 3930-3940 [7] Q.S. Huang, L.S. Yao, T.Z. Liu, J. Yang, Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum, Chem. Eng. Sci. 84 (2012) 718-726 [8] Q.S. Huang, F.H. Jiang, L.Z. Wang, C. Yang, Design of photobioreactors for mass cultivation of photosynthetic organisms, Engineering 3 (3) (2017) 318-329 [9] C. Li, J. Li, T.F. Yang, W. Deng, Formation of Ni-MoS3 hollow material with enhanced activity in slurry-phase hydrogenation of heavy oil, Energy Fuels 33 (11) (2019) 10933-10940 [10] X. Guo, L.S. Yao, Q.S. Huang, Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae, Bioresour Technol 190 (2015) 189-195 [11] H. Zou, T. Pan, Y.W. Shi, Y.W. Cheng, L.J. Wang, Y. Zhang, X. Li, Light olefin production by catalytic co-cracking of Fischer-Tropsch distillate with methanol and the reaction kinetics investigation, Chin. J. Chem. Eng. 28 (1) (2020) 143-151 [12] S. Kara, B.G. Kelkar, Y.T. Shah, N.L. Carr, Hydrodynamics and axial mixing in a three-phase bubble column, Ind. Eng. Chem. Proc. Des. Dev. 21 (4) (1982) 584-594 [13] S. Orvalho, M. Hashida, M. Zednikova, P. Stanovsky, M.C. Ruzicka, S. Sasaki, A. Tomiyama, Flow regimes in slurry bubble column:Effect of column height and particle concentration, Chem. Eng. J. 351 (2018) 799-815 [14] K.H. Choi, W.K. Lee, Circulation liquid velocity, gas holdup and volumetric oxygen transfer coefficient in external-loop airlift reactors, J. Chem. Technol. Biotechnol. 56 (1) (2007) 51-58 [15] R.F. Mudde, W.K. Harteveld, H.E.A. van den Akker, Uniform flow in bubble columns, Ind. Eng. Chem. Res. 48 (1) (2009) 148-158 [16] J.R. Crabtree, J. Bridgwater, Bubble coalescence in viscous liquids, Chem. Eng. Sci. 26 (6) (1971) 839-851 [17] K.N. Clark, The effect of high pressure and temperature on phase distributions in a bubble column, Chem. Eng. Sci. 45 (8) (1990) 2301-2307 [18] H. Chaumat, A.M. Billet, H. Delmas, Hydrodynamics and mass transfer in bubble column:Influence of liquid phase surface tension, Chem. Eng. Sci. 62 (24) (2007) 7378-7390 [19] M. Milivojevic, S. Pavlou, B. Bugarski, Liquid velocity in a high-solids-loading three-phase external-loop airlift reactor, J. Chem. Technol. Biotechnol. 87 (11) (2012) 1529-1540 [20] M.J. Bly, R.M. Worden, Gas holdup in a three-phase fluidized-bed bioreactor, Appl. Biochem. Biotechnol. 24-25 (1) (1990) 553-564 [21] B.G. Kelkar, Y.T. Shah, N.L. Carr, Hydrodynamics and axial mixing in a three-phase bubble column. Effects of slurry properties, Ind. Eng. Chem. Proc. Des. Dev. 23 (2) (1984) 308-313 [22] S.D. Kim, C.G.I. Baker, M.A. Bergougnou, Phase holdup characteristics of three phase fluidized beds, Can. J. Chem. Eng. 53 (1) (1975) 134-139 [23] P. Sastaravet, S. Bun, K. Wongwailikhit, N. Chawaloesphonsiya, M. Fujii, P. Painmanakul, Relative effect of additional solid media on bubble hydrodynamics in bubble column and airlift reactors towards mass transfer enhancement, Processes 8 (6) (2020) 713 [24] H. Xiao, S.J. Geng, A. Chen, C. Yang, F. Gao, T.B. He, Q.S. Huang, Bubble formation in continuous liquid phase under industrial jetting conditions, Chem. Eng. Sci. 200 (2019) 214-224 [25] R.J. Zou, X.Z. Jiang, B.Z. Li, Y. Zu, L.Q. Zhang, Studies on gas holdup in a bubble column operated at elevated temperatures, Ind. Eng. Chem. Res. 27 (10) (1988) 1910-1916 [26] J.M. Fox, Fischer-Tropsch reactor selection, Catal. Lett. 7 (1-4) (1990) 281-292 [27] L. Kundakovic, G. Vunjak-Novakovic, A fluid dynamic model of the draft tube gas-liquid-solid fluidized bed, Chem. Eng. Sci. 50 (23) (1995) 3763-3775 [28] J.J. Heijnen, J. Hols, R.G.J.M. van der Lans, H.L.J.M. van Leeuwen, A. Mulder, R. Weltevrede, A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime, Chem. Eng. Sci. 52 (15) (1997) 2527-2540 [29] E. Sada, H. Kumazawa, C. Lee, T. Iguchi, Gas holdup and mass-transfer characteristics in a three-phase bubble column, Ind. Eng. Chem. Proc. Des. Dev. 25 (2) (1986) 472-476 [30] R. Krishna, M.I. Urseanu, J.M. van Baten, J. Ellenberger, Rise velocity of a swarm of large gas bubbles in liquids, Chem. Eng. Sci. 54 (2) (1999) 171-183 [31] S. Rabha, M. Schubert, M. Wagner, D. Lucas, U. Hampel, Bubble size and radial gas hold-up distributions in a slurry bubble column using ultrafast electron beam X-ray tomography, Aiche J. 59 (5) (2013) 1709-1722 [32] M.H. Abdel-Aziz, I. Nirdosh, G.H. Sedahmed, Liquid-solid mass and heat transfer behavior of a concentric tube airlift reactor, Int. J. Heat Mass Transf. 58 (1-2) (2013) 735-739 [33] B. Gandhi, A. Prakash, M.A. Bergougnou, Hydrodynamic behavior of slurry bubble column at high solids concentrations, Powder Technol. 103 (2) (1999) 80-94 [34] C. Maretto, R. Krishna, Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis, Catal. Today 52 (2-3) (1999) 279-289 [35] H. Jin, D. Liu, S. Yang, G. He, Z. Guo, Z. Tong, Experimental study of oxygen mass transfer coefficient in bubble column with high temperature and high pressure, Chem. Eng. Technol. 27 (12) (2004) 1267-1272 [36] H. Kojima, S.W. Jun, H. Suzuki, Effect of pressure on volumetric mass transfer coefficient and gas holdup in bubble column, Chem. Eng. Sci. 52 (21-22) (1997) 4111-4116 [37] H.M. Letzel, J.C. Schouten, R. Krishna, C.M. van den Bleek, Gas holdup and mass transfer in bubble column reactors operated at elevated pressure, Chem. Eng. Sci. 54 (13-14) (1999) 2237-2246 [38] R. Lau, W. Peng, L.G. Velazquez-Vargas, G.Q. Yang, L.S. Fan, Gas-Liquid mass transfer in high-pressure bubble columns, Ind. Eng. Chem. Res. 43 (5) (2004) 1302-1311 [39] C.P. Ribeiro Jr, D. Mewes, The influence of electrolytes on gas hold-up and regime transition in bubble columns, Chem. Eng. Sci. 62 (17) (2007) 4501-4509 [40] B. Gourich, C. Vial, A.H. Essadki, F. Allam, M. Belhaj Soulami, M. Ziyad, Identification of flow regimes and transition points in a bubble column through analysis of differential pressure signal-Influence of the coalescence behavior of the liquid phase, Chem. Eng. Process.:Process. Intensif. 45 (3) (2006) 214-223 [41] M.C. Ruzicka, J. Drahoš, P.C. Mena, J.A. Teixeira, Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns, Chem. Eng. J. 96 (1-3) (2003) 15-22 [42] S.H. Eissa, K. Schügerl, Holdup and backmixing investigations in cocurrent and countercurrent bubble columns, Chem. Eng. Sci. 30 (10) (1975) 1251-1256 [43] G. Besagni, F. Inzoli, G. De Guido, L.A. Pellegrini, The dual effect of viscosity on bubble column hydrodynamics, Chem. Eng. Sci. 158 (2017) 509-538 [44] Otake T, Tone S, Nakao K, Mitsuhashi Y, Coalescence and breakup of bubbles in liquids, Chem. Eng. Sci. 32 (4) (1997) 377-383 44 [45] Walter J.F., Blanch B.W., Bubble break-up in gas-liquid bioreactors:Break-up in turbulent flows, Chem. Eng. J. 32 (1) (1986) 7-17 [46] S.S. Öztürk, A. Schumpe, W.D. Deckwer, Organic liquids in a bubble column:Holdups and mass transfer coefficients, AIChE J. 33 (9) (1987) 1473-1480 [47] R. Krishna, P.M. Wilkinson, L.L. van Dierendonck, A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions, Chem. Eng. Sci. 46 (10) (1991) 2491-2496 [48] P.M. Wilkinson, L.L. v Dierendonck, Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns, Chem. Eng. Sci. 45 (8) (1990) 2309-2315 [49] R.R. Hughes, A.E. Handlos, H.D. Evans, R.L. Maycock, The formation of bubbles at simple orifices, Chem. Eng. Prog. 51 (12) (1955) 557-563 [50] M. Jamialahmadi, M.R. Zehtaban, H. Müller-Steinhagen, A. Sarrafi, J.M. Smith, Study of bubble formation under constant flow conditions, Chem. Eng. Res. Des. 79 (5) (2001) 523-532 [51] J.F. Davidson, B.O.G. Schüler, Bubble formation at an orifice in a viscous liquid, Chem. Eng. Res. Des. 75 (1997) S105-S115 [52] P. Dargar, A. Macchi, Effect of surface-active agents on the phase holdups of three-phase fluidized beds, Chem. Eng. Process.:Process. Intensif. 45 (9) (2006) 764-772 [53] H. Li, A. Prakash, A. Margaritis, M.A. Bergougnou, Effects of micron-sized particles on hydrodynamics and local heat transfer in a slurry bubble column, Powder Technol. 133 (1-3) (2003) 171-184 [54] A.S. Khare, J.B. Joshi, Effect of fine particles on gas hold-up in three-phase sparged reactors, Chem. Eng. J. 44 (1) (1990) 11-25 [55] H. Li, A. Prakash, Heat transfer and hydrodynamics in a three-phase slurry bubble column, Ind. Eng. Chem. Res. 36 (11) (1997) 4688-4694 [56] T. Yang, S.J. Geng, C. Yang, Q.S. Huang, Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification, Chem. Eng. Sci. 184 (2018) 126-133 [57] S.J. Geng, Z. Li, H.Y. Liu, C. Yang, F. Gao, T.B. He, Q.S. Huang, Hydrodynamics and mass transfer in a slurry external airlift loop reactor integrating mixing and separation, Chem. Eng. Sci. 211 (2020) 115294 [58] H. Li, A. Prakash, Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column, Powder Technol. 113 (1-2) (2000) 158-167 [59] M.Y. Chisti, M. Moo-Young, Airlift reactors:characteristics, applications and design considerations, Chem. Eng. Commun. 60 (1-6) (1987) 195-242 [60] H.M. Letzel, J.C. Schouten, C.M. van den Bleek, R. Krishna, Influence of elevated pressure on the stability of bubbly flows, Chem. Eng. Sci. 52 (21-22) (1997) 3733-3739 [61] B.N. Thorat, J.B. Joshi, Regime transition in bubble columns:experimental and predictions, Exp. Therm. Fluid Sci. 28 (5) (2004) 423-430 [62] W.P. Zhang, Y.M. Yong, G.J. Zhang, C. Yang, Z.S. Mao, Mixing characteristics and bubble behavior in an airlift internal loop reactor with low aspect ratio, Chin. J. Chem. Eng. 22 (6) (2014) 611-621 [63] C. Yang, Z.-S. Mao, Design, Scale-up and Process Intensification of Multiphase Reactors, Chemical Industry Press, Beijing, 2020 [64] R. Krishna, J. Ellenberger, Gas holdup in bubble column reactors operating in the churn-turbulent flow regime, AIChE J. 42 (9) (1996) 2627-2634 [65] S. Papari, M. Kazemeini, M. Fattahi, Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor, Chin. J. Chem. Eng. 21 (6) (2013) 611-621 [66] Q.S. Huang, W.P. Zhang, C. Yang, Z.S. Mao, Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor, CIESC J. (2014) 65(7)2465-2473. (in Chinese) [67] P.C. Mena, M.C. Ruzicka, F.A. Rocha, J.A. Teixeira, J. Drahoš, Effect of solids on homogeneous-heterogeneous flow regime transition in bubble columns, Chem. Eng. Sci. 60 (22) (2005) 6013-6026 [68] A. Mota, A.A. Vicente, J. Teixeira, Effect of spent grains on flow regime transition in bubble column, Chem. Eng. Sci. 66 (14) (2011) 3350-3357 [69] C.O. Vandu, K. Koop, R. Krishna, Large bubble sizes and rise velocities in a bubble column slurry reactor, Chem. Eng. Technol. 27 (11) (2004) 1195-1199 [70] H.Y. Liu, Z. Li, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Influences of top clearance and liquid throughput on the performances of an external loop airlift slurry reactor integrated mixing and separation, Chin. J. Chem. Eng. 28 (6) (2020) 1514-1521 [71] J.L. Tao, J.G. Huang, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Experimental investigation of hydrodynamics and mass transfer in a slurry multistage internal airlift loop reactor, Chem. Eng. J. 386 (2020) 122769 [72] P. Chen, P. Gupta, M.P. Dudukovic, B.A. Toseland, Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis:Gas-liquid recirculation model and radioactive tracer studies, Chem. Eng. Sci. 61 (19) (2006) 6553-6570 [73] D.B. Bukur, J.G. Daly, S.A. Patel, Application of γ-ray attenuation for measurement of gas holdups and flow regime transitions in bubble columns, Ind. Eng. Chem. Res. 35 (1) (1996) 70-80 [74] S.C. Saxena, B.B. Patel, Heat transfer and hydrodynamic investigations in a baffled bubble column:air-water-glass bead system, Chem. Eng. Commun. 98 (1) (1990) 65-88 [75] T.F. Wang, J.F. Wang, B. Zhao, F. Ren, Y. Jin, Local hydrodynamics in an external loop airlift slurry reactor with and without a resistance-regulating element, Chem. Eng. Commun. 191 (8) (2004) 1024-1042 [76] K.C. Ruthiya, V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Detecting regime transitions in slurry bubble columns using pressure time series, AIChE J. 51 (7) (2005) 1951-1965 [77] R. Krishna, J.W.A. de Swart, J. Ellenberger, G.B. Martina, C. Maretto, Gas holdup in slurry bubble columns:Effect of column diameter and slurry concentrations, AIChE J. 43 (2) (1997) 311-316 [78] E. Sada, H. Kumazawa, C.H. Lee, Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column, AIChE J. 32 (5) (1986) 853-856 [79] M. Immich, B.T. Yu, D. Hollmann, U. Onken, Stoffübergang in einem Airlift-Schlaufenreaktor mit suspendiertem Feststoff, Chemie Ingenieur Tech. 62 (11) (1990) 945-947 [80] T. Sauer, D.C. Hempel, Fluid dynamics and mass transfer in a bubble column with suspended particles, Chem. Eng. Technol. 10 (1) (1987) 180-189 [81] K. Koide, K. Horibe, H. Kawabata, S. Ito, Gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble column with draught tube, J. Chem. Eng. Jpn.18 (3) (1985) 248-254 [82] Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiph. Flow 2 (1) (1975) 79-95 [83] H. Dhaouadi, S. Poncin, J.M. Hornut, G. Wild, Solid effects on hydrodynamics and heat transfer in an external loop airlift reactor, Chem. Eng. Sci. 61 (4) (2006) 1300-1311 [84] M.L. Liu, T.F. Wang, W. Yu, J.F. Wang, Hydrodynamics of a slurry airlift reactor at high solid concentrations, Chem. Eng. Sci. 62 (24) (2007) 7098-7106 [85] B. Jin, P.H. Yin, P. Lant, Hydrodynamics and mass transfer coefficient in three-phase air-lift reactors containing activated sludge, Chem. Eng. Process.:Process. Intensif. 45 (7) (2006) 608-617 [86] A. Chen, W.S. Yang, S.J. Geng, F. Gao, T.B. He, Z.B. Wang, Q.S. Huang, Modeling of microbubble flow and coalescence behavior in the contact zone of a dissolved air flotation tank using a computational fluid dynamics-population balance model, Ind. Eng. Chem. Res. 58 (36) (2019) 16989-17000 [87] J. Zahradník, M. Fialová, M. Ružička, J. Drahos, F. Kastánek, N.H. Thomas, Duality of the gas-liquid flow regimes in bubble column reactors, Chem. Eng. Sci. 52 (21-22) (1997) 3811-3826 [88] C.W.J. Beenakker, The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Phys. A:Stat. Mech. Appl. 128 (1-2) (1984) 48-81 [89] G.K. Batchelor, J.T. Green, The determination of the bulk stress in a suspension of spherical particles to order c 2, J. Fluid Mech. 56 (3) (1972) 401 [90] W.B. Russel, A.P. Gast, Nonequilibrium statistical mechanics of concentrated colloidal dispersions:Hard spheres in weak flows, J. Chem. Phys. 84 (3) (1986) 1815-1826 [91] D.G. Thomas, Transport characteristics of suspension:VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci. 20 (3) (1965) 267-277 [92] T.F. Ford, Viscosity-concentration and fluidity-concentration relationships for suspensions of spherical particles in Newtonian liquids, J. Phys. Chem. 64 (9) (1960) 1168-1174 [93] V. Vand, Viscosity of solutions and suspensions; theory, J Phys Colloid Chem 52 (2) (1948) 277-299 [94] van der Werff JC, de Kruif CG, C. Blom, J. Mellema, Linear viscoelastic behavior of dense hard-sphere dispersions, Phys Rev A Gen Phys 39 (2) (1989) 795-807 [95] V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Bubble size estimation in slurry bubble columns from pressure fluctuations, AIChE J. 51 (7) (2005) 1924-1937 [96] M.E. Abou-EI-Hassan, Correlations for bubble rise in gas-liquid systems, Encyclopaedia Fluid Mech., 3 (1983) 110 [97] N. Hooshyar, P.J. Hamersma, R.F. Mudde, J.R. van Ommen, Intensified operation of slurry bubble columns using structured gas injection, Can. J. Chem. Eng. 88 (4) (2010) 533-542 [98] E. Bekassy-Molnar, J.G. Majeed, G. Vatai, Overall volumetric oxygen transfer coefficient and optimal geometry of airlift tube reactor, Chem. Eng. J. 68 (1) (1997) 29-33 [99] A. Behkish, Z.W. Men, J.R. Inga, B.I. Morsi, Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures, Chem. Eng. Sci. 57 (16) (2002) 3307-3324 [100] G. Quicker, A. Schumpe, W.D. Deckwer, Gas-liquid interfacial areas in a bubble column with suspended solids, Chem. Eng. Sci. 39 (1) (1984) 179-183 [101] A. Ferreira, C. Ferreira, J.A. Teixeira, F. Rocha, Temperature and solid properties effects on gas-liquid mass transfer, Chem. Eng. J. 162 (2) (2010) 743-752 [102] B.C. Smith, D.R. Skidmore, Mass transfer phenomena in an airlift reactor:effects of solids loading and temperature, Biotechnol Bioeng 35 (5) (1990) 483-491 [103] C.O. Vandu, K. Koop, R. Krishna, Volumetric mass transfer coefficient in a slurry bubble column operating in the heterogeneous flow regime, Chem. Eng. Sci. 59 (22-23) (2004) 5417-5423 [104] C.O. Vandu, R. Krishna, Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime, Chem. Eng. Process.:Process. Intensif. 43 (8) (2004) 987-995 [105] S.C. Saxena, N.S. Rao, A.C. Saxena, Heat transfer from a cylindrical probe immersed in a three-phase slurry bubble column, Chem. Eng. J. 44 (3) (1990) 141-156 [106] K. Tsuchiya, A. Furumoto, L.S. Fan, J.P. Zhang, Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds, Chem. Eng. Sci. 52 (18) (1997) 3053-3066 [107] G.Q. Yang, B. Du, L.S. Fan, Bubble formation and dynamics in gas-liquid-solid fluidization-A review, Chem. Eng. Sci. 62 (1-2) (2007) 2-27 [108] J. Thampi, A.B. Pandit, Rheological properties of concentrated distillery spent wash and some metal corrosion studies, Indian J. Chem. Technol. 6 (4) (1999) 185-193 [109] J. Liu, C.Y. Zhu, H. Zhou, T.T. Fu, Y.G. Ma, Bubble formation of slurry system and size prediction in microchannel, CIESC J., 71(2) (2020) 544-551. (in Chinese) [110] C. Wei, B. Wu, G.L. Li, K.Q. Chen, M. Jiang, P.K. Ouyang, Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger, Bioprocess Biosyst Eng 37 (11) (2014) 2289-2304 [111] M. Jamialahmadi, H. Müller-Steinhagen, Effect of solid particles on gas hold-up in bubble columns, Can. J. Chem. Eng. 69 (1) (1991) 390-393 [112] Y.L. Qi, M. Chen, S. Liang, W. Yang, J. Zhao, Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions, Appl. Surf. Sci. 254 (6) (2008) 1684-1690 [113] A. Pashkova, K. Svajda, R. Dittmeyer, Direct synthesis of hydrogen peroxide in a catalytic membrane contactor, Chem. Eng. J. 139 (1) (2008) 165-171 [114] A.B. Pandit, J.B. Joshi, Effect of physical properties on the suspension of solid particles in three-phase sparged reactors, Int. J. Multiph. Flow 13 (3) (1987) 415-427 [115] A.R. Sarhan, J. Naser, G. Brooks, Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column, Particuology 36 (2018) 82-95 [116] K. Wongwailikhit, P. Warunyuwong, N. Chawaloesphonsiya, N. Dietrich, G. Hébrard, P. Painmanakul, Gas sparger orifice sizes and solid particle characteristics in a bubble column-relative effect on hydrodynamics and mass transfer, Chem. Eng. Technol. 41 (3) (2018) 461-468 [117] M.I. Urseanu, R.P.M. Guit, A. Stankiewicz, G. van Kranenburg, J.H.G.M. Lommen, Influence of operating pressure on the gas hold-up in bubble columns for high viscous media, Chem. Eng. Sci. 58 (3-6) (2003) 697-704 [118] A. Shaikh, M. Al-Dahhan, Characterization of the hydrodynamic flow regime in bubble columns via computed tomography, Flow Meas. Instrum. 16 (2-3) (2005) 91-98 [119] T.J. Lin, K. Tsuchiya, L.S. Fan, Bubble flow characteristics in bubble columns at elevated pressure and temperature, AIChE J. 44 (3) (1998) 545-560 [120] C.L. Hyndman, F. Larachi, C. Guy, Understanding gas-phase hydrodynamics in bubble columns:a convective model based on kinetic theory, Chem. Eng. Sci. 52 (1) (1997) 63-77 [121] T.F. Wang, J.F. Wang, Y. Jin, Experimental study and CFD simulation of hydrodynamic behaviours in an external loop airlift slurry reactor, Can. J. Chem. Eng. 82 (6) (2004) 1183-1190 [122] T.F. Wang, J.F. Wang, Y. Jin, A CFD-PBM coupled model for gas-liquid flows, Aiche J. 52 (1) (2006) 125-140 [123] H. Al-Dahhan, Abdenour Kemoun, Boon Cheng Ong, Puneet Gupta, Muthanna, Milorad P. Dudukovic. Gas holdup in bubble columns at elevated pressure via computed tomography. International Journal of Multiphase Flow (2001) 27(5)929-946 [124] A. Ohnuki, H. Akimoto, Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe, Int. J. Multiph. Flow 26 (3) (2000) 367-386 [125] S. Degaleesan, M. Dudukovic, Y. Pan, Experimental study of gas-induced liquid-flow structures in bubble columns, AIChE J. 47 (9) (2001) 1913-1931 [126] J.H. Hills, Radial non-uniformity of velocity and voidage in a bubble column, Trans. Inst. Chem. Eng. 52 (1974) 1-52. [127] T. Menzel, T.I. der Weide, O. Staudacher, U. Onken, Reynolds shear stress for modeling of bubble column reactors, Ind Eng Chem Res 29 (6) (1990) 988-994 [128] H.P. Riquarts, A physical model for axial mixing of the liquid phase for heterogeneous flow regime in bubble columns, Ger. Chem. Eng. 4 (1) (1981) 18-23 [129] R. Krishna, J.M. van Baten, M.I. Urseanu, Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime:a scale up strategy, Chem. Eng. Sci. 55 (16) (2000) 3275-3286 [130] Y.X. Wu, M.H. Al-Dahhan, Prediction of axial liquid velocity profile in bubble columns, Chem. Eng. Sci. 56 (3) (2001) 1127-1130 [131] J.C. Merchuk, Y. Stein, Local hold-up and liquid velocity in air-lift reactors, Aiche J. 27 (3) (1981) 377-388 [132] H. Tsuge, S.I. Hibino, Bubble formation from an orifice submerged in liquids, Chem. Eng. Commun. 22 (1-2) (1983) 63-79 [133] J.W.A. de Swart, R.E. van Vliet, R. Krishna, Size, structure and dynamics of "large" bubbles in a two-dimensional slurry bubble column, Chem. Eng. Sci. 51 (20) (1996) 4619-4629 [134] E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux, J. Bouillard, Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column, Chem. Eng. Process.:Process. Intensif. 38 (4-6) (1999) 329-344 [135] K. Akita, F. Yoshida, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns, Ind. Eng. Chem. Proc. Des. Dev. 13 (1) (1974) 84-91 [136] E.S. Gaddis, A. Vogelpohl, Bubble formation in quiescent liquids under constant flow conditions, Chem. Eng. Sci. 41 (1) (1986) 97-105 [137] Q.S. Huang, W.P. Zhang, C. Yang, Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction, Chem. Eng. Sci. 135 (2015) 441-451 [138] Q.S. Huang, C. Yang, G.Z. Yu, Z.S. Mao, CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Sci. 65 (20) (2010) 5527-5536 [139] T. Miyahara, M. Hamaguchi, Y. Sukeda, T. Takahashl, Size of bubbles and liquid circulation in a bubble column with a draught tube and sieve plate, Can. J. Chem. Eng. 64 (5) (1986) 718-725 [140] H.Y. Wang, F. Dong, Y.C. Bian, C. Tan, Improved correlation for the volume of bubble formed in air-water system, Chin. J. Chem. Eng. 19 (3) (2011) 529-532 [141] M. Fukuma, K. Muroyama, A. Yasunishi, Properties of bubble swarm in a slurry bubble column, J. Chem. Eng. Japan 20 (1) (1987) 28-33 [142] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems:a review, Ind. Eng. Chem. Res. 44 (16) (2005) 5873-5931 [143] J.J. Jasper, The surface tension of pure liquid compounds, J. Phys. Chem. Ref. Data 1 (4) (1972) 841-1010 [144] J.R. Deam, R.N. Maddox, Interfacial tension in hydrocarbon systems, J. Chem. Eng. Data 15 (2) (1970) 216-222 [145] R. Pohorecki, W. Moniuk, A. Zdrójkowski, P. Bielski, Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure, Chem. Eng. Sci. 56 (3) (2001) 1167-1174 [146] W.D. Deckwer, Y. Louisi, A. Zaidi, M. Ralek, Hydrodynamic properties of the Fischer-tropsch slurry process, Ind. Eng. Chem. Process. Des. Dev. 19 (4) (1980) 699-708 [147] G.S. Grover, C.V. Rode, R.V. Chaudhari, Effect of temperature on flow regimes and gas hold-up in a bubble column, Can. J. Chem. Eng. 64 (3) (1986) 501-504 [148] R. Schäfer, C. Merten, G. Eigenberger, Bubble size distributions in a bubble column reactor under industrial conditions, Exp. Therm. Fluid Sci. 26 (6-7) (2002) 595-604 [149] Y. Soong, F.W. Harke, I.K. Gamwo, R.R. Schehl, M.F. Zarochak, Hydrodynamic study in a slurry-bubble-column reactor, Catal. Today 35 (4) (1997) 427-434 [150] S.C. Saxena, Bubble column reactors and Fischer-tropsch synthesis, Catal. Rev. 37 (2) (1995) 227-309 [151] P.M. Wilkinson, H. Haringa, L.L. van Dierendonck, Mass transfer and bubble size in a bubble column under pressure, Chem. Eng. Sci. 49 (9) (1994) 1417-1427 [152] E.J. Slowinski, E.E. Gates, C.E. Waring, The effect of pressure on the surface tensions of liquids, J. Phys. Chem. 61 (6) (1957) 808-810 [153] O.K. Rice, The effect of pressure on surface tension, J. Chem. Phys. 15 (5) (1947) 333-335 [154] R. Massoudi, A.D. King Jr, Effect of pressure on the surface tension of water. Adsorption of low molecular weight gases on water at 25.deg, J. Phys. Chem. 78 (22) (1974) 2262-2266 [155] K. Stephan, D. Lucas, Vicosiv of Dense Fluids, Plenum Press, New York, 1979 [156] P.M. Wilkinson, A.P. Spek, L.L. van Dierendonck, Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J. 38 (4) (1992) 544-554 [157] P.M. Wilkinson, A.P. Spek, L.L. van Dierendonck, Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J. 38 (4) (1992) 544-554 [158] I.G. Reilly, D.S. Scott, T.J.W. Debruijn, D. MacIntyre, The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations, Can. J. Chem. Eng. 72 (1) (1994) 3-12 [159] L.S. Fan, G.Q. Yang, D.J. Lee, K. Tsuchiya, X. Luo, Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions, Chem. Eng. Sci. 54 (21) (1999) 4681-4709 [160] P. Jiang, T.J. Lin, X. Luo, L.S. Fan, Flow visualization of high pressure (21 MPa) bubble column:bubble characteristics, Chem. Eng. Res. Des. 73 (1995) 269-274 [161] H. Kojima, B. Okumura, A. Nakamura, Effect of pressure on gas holdup in a bubble column and a slurry bubble column, J. Chem. Eng. Japan 24 (1) (1991) 115-117 [162] X.K. Luo, D.J. Lee, R. Lau, G.Q. Yang, L.S. Fan, Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns, AIChE J. 45 (4) (1999) 665-680 [163] M.H. Oyevaar, T. de la Rie, C.L. van der Sluijs, K.R. Westerterp, Interfacial areas and gas hold-ups in bubble columns and packed bubble columns at elevated pressures, Chem. Eng. Process.:Process. Intensif. 26 (1) (1989) 1-14 [164] X.K. Luo, G.Q. Yang, D.J. Lee, L.S. Fan, Single bubble formation in high pressure liquid-solid suspensions, Powder Technol. 100 (2-3) (1998) 103-112 [165] H.B. Jin, S.H. Yang, G.X. He, D.L. Liu, Z.M. Tong, J.H. Zhu, Gas-liquid mass transfer characteristics in a gas-liquid-solid bubble column under elevated pressure and temperature, Chin. J. Chem. Eng. 22 (9) (2014) 955-961 [166] L. Sehabiague, B.I. Morsi, Hydrodynamic and mass transfer characteristics in a large-scale slurry bubble column reactor for gas mixtures in actual Fischer-Tropsch cuts, Int. J. Chem. React. Eng. 11 (1) (2013):83-102 [167] R.D. La Nauze, I.J. Harris, Gas bubble formation at elevated system pressures, Trans. Inst. Chem. Eng., 52 (1974) 337-348 [168] G. Kling, Über Die dynamik der Blasenbildung beim begasen von Flüssigkeiten unter druck, Int. J. Heat Mass Transf. 5 (3-4) (1962) 211-223 [169] X.K. Luo, J. Zhang, K. Tsuchiya, L.S. Fan, On the rise velocity of bubbles in liquid-solid suspensions at elevated pressure and temperature, Chem. Eng. Sci. 52 (21-22) (1997) 3693-3699 [170] R. Lemoine, A. Behkish, B.I. Morsi, Hydrodynamic and mass-transfer characteristics in organic liquid mixtures in a large-scale bubble column reactor for the toluene oxidation process, Ind. Eng. Chem. Res. 43 (19) (2004) 6195-6212 [171] X.K. Luo, P.J. Jiang, L.S. Fan, High-pressure three-phase fluidization:hydrodynamics and heat transfer, Aiche J. 43 (10) (1997) 2432-2445 [172] V.R.R. Pendyala, G. Jacobs, M.S. Luo, B.H. Davis, Fischer-tropsch synthesis:effect of start-up solvent in a slurry reactor, Catal. Lett. 143 (5) (2013) 395-400 [173] L. Sehabiague, R. Lemoine, A. Behkish, Y.J. Heintz, M. Sanoja, R. Oukaci, B.I. Morsi, Modeling and optimization of a large-scale slurry bubble column reactor for producing 10, 000 bbl/day of Fischer-Tropsch liquid hydrocarbons, J. Chin. Inst. Chem. Eng. 39 (2) (2008) 169-179 [174] A.J. Dreher, R. Krishna, Liquid-phase backmixing in bubble columns, structured by introduction of partition plates, Catal. Today 69 (1-4) (2001) 165-170 [175] V.I. Savchenko, V.G. Dorokhov, I.A. Makaryan, I.V. Sedov, V.S. Arutyunov, Slurry reactor system with inertial separation for Fischer-Tropsch synthesis and other three-phase hydrogenation processes, Can. J. Chem. Eng. 94 (3) (2016) 518-523 |
[1] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[2] | Feng Jiang, Di Xu, Ruijia Li, Guopeng Qi, Xiulun Li. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 40-52. |
[3] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[4] | Shidong Xue, Jingkun Han, Xi Xi, Junyi Zhao, Zhong Lan, Rongfu Wen, Xuehu Ma. Rapid velocity reduction and drift potential assessment of off-nozzle pesticide droplets [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 243-254. |
[5] | Jihe Chen, Zhongan Jiang, Bin Yang, Yapeng Wang, Fabin Zeng. Effect of inlet area on the performance of a two-stage cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 8-19. |
[6] | Teng Wang, Zihong Xia, Caixia Chen. Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 485-496. |
[7] | Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352. |
[8] | Chen Gu, Wenqiang Weng, Cong Lu, Peng Tan, Yao Jiang, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 42-48. |
[9] | Huina Wang, Xiaoxia Duan, Xin Feng, Zai-Sha Mao, Chao Yang. Effect of impeller type and scale-up on spatial distribution of shear rate in a stirred tank [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 351-363. |
[10] | Qianqian Kang, Jinfan Liu, Xin Feng, Chao Yang, Jingtao Wang. Isolated mixing regions and mixing enhancement in a high-viscosity laminar stirred tank [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 176-192. |
[11] | Zai-Sha Mao, Chao Yang. Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 210-219. |
[12] | Tianlei Wang, Zhikang Xu, Yuanyuan Yue, Tinghai Wang, Minggui Lin, Haibo Zhu. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 384-391. |
[13] | Tao Liu, Ying Xie, Lei Shi, Yu Liu, Zhenyu Chu, Wanqin Jin. 3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 105-113. |
[14] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[15] | Mohammad Yousefi, Shima Azizi, S. M. Peyghambarzadeh, Zoha Azizi. Ethylene absorption in N-methyl-2-pyrrolidone/silver nano-solvent: Thermodynamics and kinetics study [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 57-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||