[1] M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, K. Sopian, Renewable hydrogen economy in Asia-Opportunities and challenges:An overview, Renew. Sust. Energ. Rev. 30(2014) 743-757.[2] A.C. Lua, H.Y. Wang, Decomposition of methane over unsupported porousnickel and alloy catalyst, Appl. Catal. B Environ. 132(2013) 469-478.[3] N. Shah, D. Panjala, P. Huffman, Hydrogen production by catalytic decomposition of methane, Energy Fuel 15(2001) 1528-1534.[4] M. Friedrich, D. Teschner, A. Knop-Gericke, M.J. Armbrüster, Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming, J. Phys. Chem. C 116(2012) 14930-14935.[5] A.M. Amin, E. Croiset, W. Epling, Review of methane catalytic cracking for hydrogen production, Int. J. Hydrog. Energy 36(2011)2904-2935.[6] G. Wang, Y. Jin, G. Liu, Y. Li, Production of hydrogen and nanocarbon from catalytic decomposition of methane over a Ni-Fe/Al2O3 catalyst, Energy Fuel 27(2013) 4448-4456.[7] A.S.A. Al-Fatish, A.A. Ibrahim, A.H. Fakeeha, M.A. Soliman, M.R.H. Siddiqui, A.E. Abasaeed, Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts, Appl. Catal. A Gen. 364(2009) 150-155.[8] A.S.A. Al-Fatish, A.A. Ibrahim, A.H. Fakeeha, A.E. Abasaeed, M.R.H. Siddiqui, Oxidative CO2 reforming of CH4 over Ni/a-Al2O3 catalyst, Ind. Eng. Chem. Res. 17(2011) 479-483.[9] A.S.A. Al-Fatish, A.H. Fakeeha, A.A. Ibrahim, W.U. Khan, H. Atia, R. Eckelt, K. Seshan, B. Chowdhury, Decomposition of methane over alumina supported Fe and Ni-Fe bimetallic catalyst:Effect of preparation procedure and calcination temperature, J. Saudi Chem. Soc. 22(2018)239-247.[10] M. Pudukudy, Z. Yaakob, M.S. Takriff, Methane decomposition over Pd promoted Ni/MgAl2O4 catalysts for the production of COx free hydrogen and multiwalled carbon nanotubes, Appl. Surf. Sci. 356(2015) 1320-1326.[11] J. Chen, Y. Li, Y. Ma, Y. Qin, L. Chang, Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions, Carbon 39(2001) 1467-1475.[12] T.V. Reshetenko, L.B. Avdeeva, A.A. Khassin, G.N. Kustova, V.A. Ushakov, E.M. Moroz, A.N. Shmakov, V.V. Kriventsov, Yu.T. Pavlyukhin, A.L. Chuvilin, Z.R. Ismagilov, Coprecipitated iron-containing 411 catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition 412 at moderate temperatures I. Genesis of calcined and reduced catalysts, Appl. Catal. A Gen. 268(2004) 127-138.[13] M. Pudukudy, A. Kadier, Z. Yaakob, M.S. Takriff, Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts, Int. J. Hydrog. Energy 41(2016) 18509-18521.[14] V. Venugopal, S.N. Kumar, J. Ashok, D.H. Prasad, V.D. Kumari, K.B.S. Prasad, M. Subrahmanyam, Hydrogen production by catalytic decomposition of methane over Ni/SiO2, Int. J. Hydrog. Energy 32(2007) 1782-1788.[15] M. Pudukudy, Z. Yaakob, M.S. Takriff, Methane decomposition over unsupported mesoporous nickel ferrites:Effect of reaction temperature on the catalytic activity and properties of the produced nanocarbon, RSC Adv. 6(2016) 68081-68091.[16] M. Pudukudy, Z. Yaakob, Z.S. Akmal, Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts, Appl. Surf. Sci. 330(2015) 418-430.[17] Z.J. Ayoub, M.J. Tafreshi, M. Fazli, Effect of calcination temperature on the alumina-zirconia nanostructures prepared by combustion synthesis, J. Nanostruct. 2(2013) 457-461.[18] S. Ratkovic, D.J. Vujicic, E. Kiss, G. Boskovic, O. Geszti, Different degrees of weak metal-support interaction in Fe-(Ni)/Al2O3 catalyst governing activity and selectivity in carbon nanotubes' production using ethylene, Mater. Chem. Phys. 129(2011) 398-405.[19] A. Cabello, C. Dueso, F.G. Labiano, P. Gayán, A. Abad, L.F. Diego, J. Adánez, Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit, Fuel 121(2014) 117-125.[20] A. Cabello, A. Abad, F.G. Labiano, P. Gayán, L.F. Diego, J. Adánez, Kinetics determination of reduction and oxidation of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in CLC, Chem. Eng. J. 258(2014)265-280.[21] J.Y. Park, Y.L. Lee, P.K. Khanna, K.W. Jun, J.W. Bae, Y.H. Kim, Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts:Effect of particle size of iron oxide, J. Mol. Catal. A Chem. 323(2010) 84-90.[22] W. Ahmed, M.R.N. El-Din, A.A. Aboul-Enein, A.E. Awadallah, Effect of textural properties of alumina support on the catalytic performance of Ni/Al2O3 catalysts for hydrogen production via methane decomposition, J. Nat. Gas Sci. Eng. 25(2015) 359-366.[23] R. Yang, X. Li, J. Wu, X. Zhang, Z. Zhang, Y. Cheng, J. Guo, Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3 catalysts:Surface Ni species-catalytic activity correlation, Appl. Catal. A Gen. 368(2009) 105-112.[24] Z. Zhang, Y. Wang, Q. Tan, Z. Zhong, F. Su, Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries, J. Colloid Interface Sci. 398(2013) 185-192.[25] F. Guoa, J.Q. Xua, W. Chu, CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma, Catal. Today 256(2015) 124-129.[26] F. Cao, S. Su, J. Xiang, P. Wang, S. Hu, L. Sun, A. Zhang, The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3, Fuel 139(2015)232-239.[27] P. Sudarsanam, B. Hillary, D.K. Deepa, M.H. Amin, B. Mallesham, B.M. Reddy, S.K. Bhargava, Catal. Sci. Technol. 5(2015) 3496-3500.[28] A.V. Neimark, K.S.W. Sing, M. Thommes, Characterization of solid catalysts:Surface area and porosity, in:G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp (Eds.), Hand Book of Heterogeneous Catalyst, 2nd edn, vol. 2, WILEY-VCH, Weinheim 2008, pp. 723-729.[29] V.V. Chesnokov, A.S. Chichkan, Production of hydrogen by methane catalytic decomposition over Ni-Cu-Fe/Al2O3 catalyst, Int. J. Hydrog. Energy 34(2009)2979-2985.[30] A.J. Carrillo, D. Sastre, L. Zazo, D.P. Serrano, J.M. Coronado, P. Pizarro, Hydrogen production by methane decomposition over MnOx/YSZ catalysts, Int. J. Hydrog. Energy 41(2016) 19382-19389.[31] D. Torres, S. de Llobet, J.L. Pinilla, M.J. Lazaro, I. Suelves, R. Moliner, Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor, J. Nat. Gas Chem. 21(2012) 367-373. |