Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (10): 2055-2063.DOI: 10.1016/j.cjche.2017.08.008
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Yulin Wang, Huan Liu, Zhen Ma
Received:
2017-06-22
Revised:
2017-08-06
Online:
2018-11-14
Published:
2018-10-28
Contact:
Zhen Ma,E-mail address:zhenma@fudan.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21177028 and 21477022).
Yulin Wang, Huan Liu, Zhen Ma
通讯作者:
Zhen Ma,E-mail address:zhenma@fudan.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21177028 and 21477022).
Yulin Wang, Huan Liu, Zhen Ma. Cerium phosphate-supported Au catalysts for CO oxidation[J]. Chin.J.Chem.Eng., 2018, 26(10): 2055-2063.
Yulin Wang, Huan Liu, Zhen Ma. Cerium phosphate-supported Au catalysts for CO oxidation[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2055-2063.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.08.008
[1] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chem. Lett. 6(1987) 405-408.[2] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A Gen. 222(2001) 427-437.[3] A.S.K. Hashmi, G.J. Hutchings, Gold catalysis, Angew. Chem. Int. Ed. 45(2006) 7896-7936.[4] A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions, Chem. Soc. Rev. 37(2008) 2096-2126.[5] Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis, Chem. Rev. 112(2012) 2467-2505.[6] M. Stratakis, H. Garcia, Catalysis by supported gold nanoparticles:beyond aerobic oxidative processes, Chem. Rev. 112(2012) 4469-4506.[7] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction, J. Catal. 197(2001) 113-122.[8] S.H. Overbury, L. Ortiz-Soto, H.G. Zhu, B. Lee, M.D. Amiridis, S. Dai, Comparison of Au catalysts supported on mesoporous titania and silica:investigation of Au particle size effects and metal-support interactions, Catal. Lett. 95(2004) 99-106.[9] Z. Ma, S. Dai, Development of novel supported gold catalysts:a materials perspective, Nano Res. 4(2011) 3-32.[10] L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan, MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C 112(2008) 6981-6987.[11] R. Si, M. Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction, Angew. Chem. Int. Ed. 47(2008) 2884-2887.[12] X.-S. Huang, H. Sun, L.-C. Wang, Y.-M. Liu, K.-N. Fan, Y. Cao, Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation, Appl. Catal. B Environ. 90(2009) 224-232.[13] G.Q. Yi, H.W. Yang, B.D. Li, H.Q. Lin, K. Tanaka, Y.Z. Yuan, Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts nanoscale CeO2 shape effect and mechanism aspect, Catal. Today 157(2010) 83-88.[14] W.F. Yan, S. Brown, Z.W. Pan, S.M. Mahurin, S.H. Overbury, S. Dai, Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate, Angew. Chem. Int. Ed. 45(2006) 3614-3618.[15] Z. Ma, H.F. Yin, S.H. Overbury, S. Dai, Metal phosphates as a new class of supports for gold nanocatalysts, Catal. Lett. 126(2008) 20-30.[16] Z. Ma, H.F. Yin, S. Dai, Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation, Catal. Lett. 138(2010) 40-45.[17] M. Li, Z. Wu, S.H. Overbury, CO oxidation on phosphate-supported Au catalysts:effect of support reducibility on surface reactions, J. Catal. 278(2011) 133-142.[18] H. Liu, Y. Lin, Z. Ma, Au/LaPO4 nanowires:synthesis, characterization, and catalytic CO oxidation, J. Taiwan Inst. Chem. Eng. 62(2016) 275-282.[19] X.S. Qian, H.M. Qin, T. Meng, Y. Lin, Z. Ma, Metal phosphate-supported Pt catalysts for CO oxidation, Materials 7(2014) 8105-8130.[20] B. Pan, S.J. Luo, W.Y. Su, X.X. Wang, Photocatalytic CO2 reduction with H2O over LaPO4 nanorods deposited with Pt cocatalyst, Appl. Catal. B Environ. 168(2015) 458-464.[21] H. Tamai, T. Ikeya, F. Nishiyama, H. Yasuda, K. Iida, S. Nojima, NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles, J. Mater. Sci. 35(2000) 4945-4953.[22] Y. Lin, T. Meng, Z. Ma, Catalytic decomposition of N2O over RhOx supported on metal phosphates, J. Ind. Eng. Chem. 28(2015) 138-146.[23] M. Machida, T. Eidome, S. Minami, H.P. Buwono, S. Hinokuma, Y. Nagao, Y. Nakahara, Tuning the electron density of Rh supported on metal phosphates for three-way catalysis, J. Phys. Chem. C 119(2015) 11653-11661.[24] H. Liu, Z. Ma, Effect of different LaPO4 supports on the catalytic performance of Rh2O3/LaPO4 in N2O decomposition and CO oxidation, J. Taiwan Inst. Chem. Eng. 71(2017) 373-380.[25] H. Sun, F.Z. Su, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes, Angew. Chem. Int. Ed. 48(2009) 4390-4393.[26] M.I. Dominguez, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Gold/hydroxyapatite catalysts synthesis, characterization and catalytic activity to CO oxidation, Appl. Catal. B Environ. 87(2009) 245-251.[27] J. Huang, L.-C. Wang, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation, Appl. Catal. B Environ. 101(2011) 560-569.[28] Y.M. Liu, H. Tsunoyama, T. Akita, S.H. Xie, T. Tsukuda, Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite:size effect in the sub-2 nm regime, ACS Catal. 1(2011) 2-6.[29] C.Y. Huang, Z. Ma, P.F. Xie, Y.H. Yue, W.M. Hua, Z. Gao, Hydroxyapatite-supported rhodium catalysts for N2O decomposition, J. Mol. Catal. A Chem. 400(2015) 90-94.[30] C.Y. Huang, Y.X. Jiang, Z. Ma, P.F. Xie, Y. Lin, T. Meng, C.X. Miao, Y.H. Yue, W.M. Hua, Z. Gao, Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition, J. Mol. Catal. A Chem. 420(2016) 73-81.[31] A. Venugopal, M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts:behaviour in the water gas shift reaction, Appl. Catal. A Gen. 245(2003) 137-147.[32] C. Mondelli, D. Ferri, A. Baiker, Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol:an in situ ATR-IR spectroscopy study, J. Catal. 258(2008) 170-176.[33] Y.W. Cui, H. Liu, Y. Lin, Z. Ma, Metal phosphate-supported RuOx catalysts for N2O decomposition, J. Taiwan Inst. Chem. Eng. 67(2016) 254-262.[34] H. Onoda, H. Nariai, A. Moriwaki, H. Maki, I. Motooka, Formation and catalytic characterization of various rare earth phosphates, J. Mater. Chem. 12(2002) 1754-1760.[35] Y. Takita, X. Qing, A. Takami, H. Nishiguchi, K. Nagaoka, Oxidative dehydrogenation of isobutane to isobutene Ⅲ:reaction mechanism over CePO4 catalyst, Appl. Catal. A Gen. 296(2005) 63-69.[36] X.L. Weng, R.J. Mei, M.P. Shi, Q.Y. Kong, Y. Liu, Z.B. Wu, CePO4 catalyst for elemental mercury removal in simulated coal-fired flue gas, Energy Fuel 29(2015) 3359-3365.[37] W.Y. Yao, Y. Liu, X.Q. Wang, X.L. Weng, H.Q. Wang, Z.B. Wu, The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3, J. Phys. Chem. C 120(2016) 221-229.[38] F. Romero-Sarria, M.I. Dominguez, M.A. Centeno, J.A. Odriozola, CO oxidation at low temperature on Au/CePO4:mechanistic aspects, Appl. Catal. B Environ. 107(2011) 268-273.[39] J. Kang, S. Byun, S. Nam, S. Kang, T. Moon, B. Park, Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts, Int. J. Hydrog. Energy 39(2014) 10921-10926.[40] J. Park, Y. Oh, Y. Park, S. Nam, J. Moon, J. Kang, D.-R. Jung, S. Byun, B. Park, Methanol oxidation in nanostructured platinum/cerium-phosphate thin films, Curr. Appl. Phys. 11(2011) S2-S5.[41] Y.J. Zhang, J.H. Wang, T. Zhang, Novel Ca-doped CePO4 supported ruthenium catalyst with superiorcatalyticperformancefor aerobic oxidation ofalcohols, Chem. Commun. 47(2011) 5307-5309.[42] H. Liu, Z. Ma, Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation, Chin. J. Chem. Eng. (2017) https://doi.org/10.1016/j.cjche.2017.02.007(in press).[43] H. Liu, Z. Ma, Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition, Front. Chem. Sci. Eng. (2017) https://doi.org/10.1017/s11705-017-1659-6(in press).[44] S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, F. Audubert, Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y)-part I. Synthesis and characterization, J. Solid State Chem. 177(2004) 1302-1311.[45] Y.P. Fang, A.W. Xu, R.Q. Song, H.X. Zhang, L.P. You, J.C. Yu, H.Q. Liu, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires, J. Am. Chem. Soc. 125(2003) 16025-16034.[46] M.H. Cao, C.W. Hu, Q.Y. Wu, C.X. Guo, Y.J. Qi, E.B. Wang, Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires, Nanotechnology 16(2005) 282-286.[47] Q.J. Zheng, X. Wang, J.T. Tian, R. Kang, Y.S. Yin, Synthesis and characterization of LaPO4 powder heat treated at various temperatures, Mater. Chem. Phys. 122(2010) 49-52.[48] D. Palma-Ramirez, M.A. Dominguez-Crespo, A.M. Torres-Huerta, H. DorantesRosales, E. Ramirez-Meneses, E. Rodriguez, Microwave-assisted hydrothermal synthesis of CePO4 nanostructures:correlation between the structural and optical properties, J. Alloys Compd. 643(2015) S209-S218.[49] M. Haruta, When gold is not noble:catalysis by nanoparticles, Chem. Rec. 3(2003) 75-87.[50] R. Zanella, L. Delannoy, C. Louis, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea, Appl. Catal. A Gen. 291(2005) 62-72.[51] M. Khoudiakov, M.C. Gupta, S. Deevi, Au/Fe2O3 nanocatalysts for CO oxidation:a comparative study of deposition-precipitation and coprecipitation techniques, Appl. Catal. A Gen. 291(2005) 151-161.[52] S. Royer, D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem 3(2011) 24-65.[53] F.Y. Lu, Y.Q. Shen, X. Sun, Z.L. Dong, R.C. Ewing, J. Lian, Size dependence of radiationinduced amorphization and recrystallization of synthetic nanostructured CePO4 monazite, Acta Mater. 61(2013) 2984-2992.[54] Y.J. Zhang, H.M. Guan, Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires, J. Cryst. Growth 256(2003) 156-161.[55] W.F. Yan, S.M. Mahurin, Z.W. Pan, S.H. Overbury, S. Dai, Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals, J. Am. Chem. Soc. 127(2005) 10480-10481.[56] Z. Ma, S.H. Overbury, S. Dai, Au/MxOy/TiO2 catalysts for CO oxidation:promotional effect of main-group, transition, and rare-earth metal oxide additives, J. Mol. Catal. A Chem. 273(2007) 186-197.[57] E.A. Willneff, S. Braun, D. Rosenthal, H. Bluhm, M. Havecker, E. Kleimenov, A. KnopGericke, R. Schlogl, S.L.M. Schroeder, Dynamic electronic structure of a Au/TiO2 catalyst under reaction conditions, J. Am. Chem. Soc. 128(2006) 12052-12053.[58] H.Y. Xu, W. Chu, J.J. Luo, M. Liu, New Au/FeOx/SiO2 catalysts using depositionprecipitation for low-temperature carbon monoxide oxidation, Catal. Commun. 11(2010) 812-815.[59] J.M.C. Soares, P. Morrall, A. Crossley, P. Harris, M. Bowker, Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts, J. Catal. 219(2003) 17-24.[60] M.C. Kung, R.J. Davis, H.H. Kung, Understanding Au-catalyzed low-temperature CO oxidation, J. Phys. Chem. C 111(2007) 11767-11775. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[4] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[6] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[7] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 146-154. |
[8] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[9] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[10] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[11] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[12] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[13] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[14] | Peiyin Chen, Yanxiong Fang, Kaihong Xie, Yao Chen, Yang Liu, Hongliang Zuo, Weijian Lu, Baoyu Liu. Lacunary silicotungstic heteropoly salts as high-performance catalysts in oxidation of cyclopentene [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 152-159. |
[15] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||