Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (10): 2206-2218.DOI: 10.1016/j.cjche.2018.03.005
• Review • Previous Articles
Yuan Pu1,2, Jingning Leng1,2, Dan Wang1,2, Jiexin Wang1,2, Neil R. Foster2,3, Jianfeng Chen1,2
Received:
2018-01-10
Revised:
2018-02-28
Online:
2018-11-14
Published:
2018-10-28
Contact:
Dan Wang,E-mail address:wangdan@mail.buct.edu.cn
Supported by:
Supported by the National Key Research and Development Program of China (2016YFA0201701/2016YFA0201700), the Beijing Natural Science Foundation (2182051), the National Natural Science Foundation of China (21622601), the Fundamental Research Funds for the Central Universities of China (BUCTRC201601), and the "111" project of China (B14004).
Yuan Pu1,2, Jingning Leng1,2, Dan Wang1,2, Jiexin Wang1,2, Neil R. Foster2,3, Jianfeng Chen1,2
通讯作者:
Dan Wang,E-mail address:wangdan@mail.buct.edu.cn
基金资助:
Supported by the National Key Research and Development Program of China (2016YFA0201701/2016YFA0201700), the Beijing Natural Science Foundation (2182051), the National Natural Science Foundation of China (21622601), the Fundamental Research Funds for the Central Universities of China (BUCTRC201601), and the "111" project of China (B14004).
Yuan Pu, Jingning Leng, Dan Wang, Jiexin Wang, Neil R. Foster, Jianfeng Chen. Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals[J]. Chin.J.Chem.Eng., 2018, 26(10): 2206-2218.
Yuan Pu, Jingning Leng, Dan Wang, Jiexin Wang, Neil R. Foster, Jianfeng Chen. Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2206-2218.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.03.005
[1] D. Jaque, C. Richard, B. Viana, K. Soga, X. Liu, J. García Solé, Inorganic nanoparticles for optical bioimaging, Adv. Opt. Photon. 8(1) (2016) 103.[2] F. Cai, D. Wang, M. Zhu, S. He, Pencil-like imaging spectrometer for biosamples sensing, Biomed. Opt. Express 8(2017) 5427-5436.[3] J. Xie, G. Liu, H.S. Eden, H. Ai, X. Chen, Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy, Acc. Chem. Res. 44(2011) 883-892.[4] P.P. Laissue, R.A. Alghamdi, P. Tomancak, E.G. Reynaud, H. Shroff, Assessing phototoxicity in live fluorescence imaging, Nat. Methods 14(2017) 657-661.[5] D. Wang, Z. Wang, Q. Zhan, Y. Pu, J.-X. Wang, N.R. Foster, L. Dai, Facile and scalable preparation of fluorescent carbon dots for multifunctional applications, Engineering 3(2017) 402-408.[6] M.A. Miller, E. Kim, M.F. Cuccarese, A.L. Plotkin, M. Prytyskach, R.H. Kohler, M.J. Pittet, R. Weissleder, Near infrared imaging of Mer tyrosine kinase (MERTK) using MERi-SiR reveals tumor associated macrophage uptake in metastatic disease, Chem. Commun. 54(2018) 42-45.[7] Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, J. Qian, Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deeptissue in vivo imaging, Biomed. Opt. Express 6(2015) 3783-3794.[8] D. Wang, J.-F. Chen, L. Dai, Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals, Part. Part. Syst. Charact. 32(2015) 515-523.[9] D. Wang, L. Zhu, C. McCleese, C. Bruda, J.-F. Chen, L. Dai, Fluorescent carbon dots from milk by microwave cooking, RSC Adv. 6(2016) 41516-41521.[10] J.T. Hou, W.X. Ren, K. Li, J. Seo, A. Sharma, X.Q. Yu, J.S. Kim, Fluorescent bioimaging of pH:From design to applications, Chem. Soc. Rev. 46(2017) 2076-2090.[11] M.J. Schnermann, Chemical biology:Organic dyes for deep bioimaging, Nature 551(2017) 176-177.[12] J. Qian, B.Z. Tang, AIE Luminogens for bioimaging and theranostics:From organelles to animals, Chem 3(2017) 56-91.[13] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307(2005) 538-544.[14] X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol. 22(2004) 969-976.[15] X. Huang, J. Wu, Y. Zhu, Y. Zhang, X. Feng, X. Lu, Flow-resistance analysis of nanoconfined fluids inspired from liquid nano-lubrication:A review, Chin. J. Chem. Eng. 25(2017) 1552-1562.[16] Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, C. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng. 25(2017) 1639-1652.[17] A. Jayalakshmi, I.C. Kim, Y.N. Kwon, Suppression of gold nanoparticle agglomeration and its separation via nylon membranes, Chin. J. Chem. Eng. 25(2017) 931-937.[18] D. Wang, J. Qian, F. Cai, S. He, S. Han, Y. Mu,‘Green’ synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating:Ultrastable and biocompatible optical probes for in vivo animal imaging, Nanotechnology 23(2012) 245701.[19] Y. Pu, F. Cai, D. Wang, J.-X. Wang, J.-F. Chen, Colloidal synthesis of semiconductor quantum dots toward large-scale production:A review, Ind. Eng. Chem. Res. 57(2018) 1790-1802.[20] D. Wang, J. Qian, W. Qin, A. Qin, B.Z. Tang, S. He, Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging, Sci. Rep. 4(2014) 4279.[21] T. Kao, F. Kohle, K. Ma, T. Aubert, A. Andrievsky, U. Wiesner, Fluorescent Silica Nanoparticles with well-separated intensity distributions from batch reactions, Nano Lett. 18(2018) 1305-1310.[22] W.M. Abdelwahab, E. Phillips, G. Patonay, Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique:Application to latent fingerprints detection and hemocompatibility studies, J. Colloid Interface Sci. 512(2018) 801-811.[23] D. Wang, J. Liu, J.-F. Chen, L. Dai, Surface functionalization of carbon dots with polyhedraloligomericsilsesquioxane (POSS) for multifunctional applications, Adv. Mater. Interfaces 3(2016) 1500439.[24] J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr (VI) detection, Sensors Actuators B Chem. 248(2017) 92-100.[25] J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging, Mater. Sci. Eng. C 76(2017) 856-864.[26] L. Li, Y. Liu, P. Hao, Z. Wang, L. Fu, Z. Ma, J. Zhou, PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and Ⅱ window, Biomaterials 41(2015) 132-140.[27] D. Li, W. Qin, B. Xu, J. Qian, B.Z. Tang, AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term superresolution bioimaging, Adv. Mater. 29(2017) 1703643.[28] N. Alifu, L. Yan, H. Zhang, A. Zebibula, Z. Zhu, W. Xi, A.W. Roe, B. Xu, W. Tian, J. Qian, Organic dye doped nanoparticles with NIR emission and biocompatibility for ultradeep in vivo two-photon microscopy under 1040 nm femtosecond excitation, Dyes Pigments 143(2017) 76-85.[29] G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles:Design, nanochemistry, and applications in theranostics, Chem. Rev. 114(2014) 5161-5214.[30] D. Wang, L. Zhu, J.-F. Chen, L. Dai, Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically miniature reactors for photocatalysis and photodynamic therapy, Angew. Chem. Int. Ed. 55(2016) 10795-10799.[31] C. Yao, W. Wang, P. Wang, M. Zhao, X. Li, F. Zhang, Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy, Adv. Mater. 30(2018) 1704833.[32] S. Chen, A.Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A.J.Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L.K. Parajuli, S. Okabe, D.B. Loong Teh, A.H. All, I. Tsutsui-Kimura, K.F. Tanaka, X. Liu, T.J. McHugh, Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics, Science 359(2018) 679-684.[33] S. Hilderbrand, R. Weissleder, Near-infrared fluorescence:Application to in vivo molecular imaging, Curr. Opin. Chem. Biol. 14(2010) 71-79.[34] F. Cai, J. Yu, J. Qian, Y. Wang, Z. Chen, J. Huang, Z. Ye, S. He, Use of tunable secondharmonic signal from KNbO3 nanoneedles to find optimal wavelength for deeptissue imaging, Laser Photonics Rev. 8(2015) 865-874.[35] J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B.Z. Tang, S. He, High-order non-linear optical effects in organic luminogens with aggregationinduced emission, Adv. Mater. 27(2015) 2332-2339.[36] F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, Upconversion nanoparticles in biological labeling, imaging, and therapy, Analyst 135(2010) 1839-1854.[37] J. Zhou, Z. Liu, F. Li, Upconversion nanophosphors for small-animal imaging, Chem. Soc. Rev. 41(2012) 1323-1349.[38] O.S. Kwon, H.S. Song, J. Conde, H. Kim, N. Artzi, J.H. Kim, Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo, ACS Nano 10(2016) 1512-1521.[39] M.H. Alkahtani, F.S. Alghannam, C. Sanchez, C.L. Gomes, H. Liang, P.R. Hemmer, High efficiency upconversion nanophosphors for high-contrast bioimaging, Nanotechnology 27(2016) 485501.[40] M. Alkahtani, Y. Chen, J.J. Pedraza, J.M. González, D.Y. Parkinson, P.R. Hemmer, H. Liang, High resolution fluorescence bio-imaging upconversion nanoparticles in insects, Opt. Express 25(2017) 1030-1039.[41] X. Wen, B. Wang, R. Wu, N. Li, S. He, Q. Zhan, Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy, Biomed, Opt. Express 7(2016) 2174-2185.[42] J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, S. He, Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW, Biomed. Opt. Express 6(2015) 1857-1866.[43] Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, Amplified stimulated emission in upconversion nanoparticles for superresolution nanoscopy, Nature 543(2017) 229-233.[44] Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, S. He, Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles, Nat. Commun. 8(2017) 1058.[45] D. Wang, L. Zhu, Y. Pu, J.X. Wang, J.F. Chen, L. Dai, Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with nearinfrared irradiation and luminescence bioimaging, Nano 9(2017) 11214-11221.[46] S. Li, S. Cui, D. Yin, Q. Zhu, Y. Ma, Z. Qian, Y. Gu, Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drugresistant bacteria in deep tissue, Nano 9(2017) 3912-3924.[47] S.S. Lucky, N.M. Idris, K. Huang, J. Kim, Z. Li, P.S. Thong, R. Xu, K.C. Soo, Y. Zhang, In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers, Theranostics 6(2016) 1844-1865.[48] D. Wang, B. Liu, Z. Quan, C. Li, Z. Hou, B. Xing, J. Lin, New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors, J. Mater. Chem. B 5(2017) 2209-2230.[49] X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, Dyesensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications, ACS Nano 10(2016) 1060-1066.[50] A. Bansal, H. Liu, M.K. Jayakumar, S. Andersson-Engels, Y. Zhang, Quasi-continuous wave near-infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans, Small 12(2016) 1732-1743.[51] A. Pliss, T.Y. Ohulchanskyy, G. Chen, J. Damasco, C.E. Bass, P.N. Prasad, Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light, ACS Photonics 4(2017) 806-814.[52] K. Huang, Q. Dou, X.J. Loh, Nanomaterial mediated optogenetics:Opportunities and challenges, RSC Adv. 6(2016) 60896-60906.[53] X. Wang, R.R. Valiev, T.Y. Ohulchanskyy, Å. H, C. Yang, G. Chen, Dye-sensitized lanthanide-doped upconversion nanoparticles, Chem. Soc. Rev. 46(2017) 4150-4167.[54] G. Chen, H. Agren, T.Y. Ohulchanskyy, P.N. Prasad, Light upconverting core-shell nanostructures:Nanophotonic control for emerging applications, Chem. Soc. Rev. 44(2015) 1680-1713.[55] A. Sedlmeier, D.E. Achatz, L.H. Fischer, H.H. Gorris, O.S. Wolfbeis, Photon upconverting nanoparticles for luminescent sensing of temperature, Nano 4(2012) 7090-7096.[56] X. Chen, D. Peng, Q. Ju, F. Wang, Photon upconversion in core-shell nanoparticles, Chem. Soc. Rev. 44(2015) 1318-1330.[57] J. Hesse, D.T. Klier, M. Sgarzi, A. Nsubuga, C. Bauer, J. Grenzer, R. Hübner, M. Wislicenus, T. Joshi, M.U. Kumke, H. Stephan, Chem. Open 7(2018) 159-168.[58] X. Liu, C.-H. Yan, J.A. Capobianco, Photon upconversion nanomaterials, Chem. Soc. Rev. 44(2015) 1299-1301.[59] D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, J. Lin, Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery, Chem. Soc. Rev. 44(2015) 1416-1448.[60] D. Chen, P. Huang, Y. Yu, F. Huang, A. Yang, Y. Wang, Dopant-induced phase transition:A new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature, Chem. Commun. 47(2011) 5801-5803.[61] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S.A. Engels, Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation, ACS Nano 5(2011) 3744-3757.[62] T. Rinkel, A.N. Raj, S. Dühnen, M. Haase, Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 Core/Shell upconversion nanocrystals with 5 nm particle cores, Angew. Chem. Int.Ed. 55(2016) 1164-1167.[63] P. Lei, R. An, S. Yao, Q. Wang, L. Dong, X. Xu, K. Du, J. Feng, H. Zhang, Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature, Adv. Mater. 29(2017) 1700505.[64] Y. Feng, H. Chen, L. Ma, B. Shao, S. Zhao, Z. Wang, H. You, Surfactant-free aqueous synthesis of novel Ba2GdF7:Yb3+,Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging, ACS Appl. Mater. Interfaces 9(2017) 15096-15102.[65] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials:Advances and applications, Chem. Rev. 115(2015) 395-465.[66] M. Longmire, P.L. Choyke, H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents:Considerations and caveats, Nanomedicine 3(2008) 703-717.[67] J. Qian, L. Jiang, F. Cai, D. Wang, S. He, Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging, Biomaterials 32(2011) 1602-1610.[68] J.P. Zimmer, S.W. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni, M.G. Bawendi, Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging, J. Am. Chem. Soc. 128(2006) 2526-2527.[69] G.S. Yi, G.M. Chow, Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence, Chem. Mater. 19(2007) 341-343.[70] J. Shen, G. Chen, T.Y. Ohulchanskyy, S.J. Kesseli, S. Buchholz, Z. Li, P.N. Prasad, G. Han, Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb,Tm)/CaF2 core/shell nanoparticles for in situ realtime recorded biocompatible photoactivation, Small 9(2013) 3213-3217.[71] G. Chen, W. Shao, R.R. Valiev, T.Y. Ohulchanskyy, G.S. He, H. Ågren, P.N. Prasad, Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals, Adv. Opt. Mater. 4(2016) 1760-1766.[72] W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light, Nat. Photonics 6(2012) 560-564.[73] G. Chen, J. Damasco, H. Qiu, S. Wei, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, P.N. Prasad, H. Ågren, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal, Nano Lett. 15(2015) 7400-7407.[74] H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging, Chem. Rev. 110(2010) 2620-2640.[75] J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics-a review of materials, devices and concepts for performance enhancement, Adv. Opt. Mater. 3(2015) 510-535.[76] M.V. Dacosta, S. Doughan, Y. Han, U.J. Krull, Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging:A review, Anal. Chim. Acta 832(2014) 1-33.[77] B. Zhou, B. Shi, D. Jin, X. Liu, Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechnol. 10(2015) 924-936.[78] J. Shan, Y. Ju, A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb,Er upconversion nanophosphors, Nanotechnology 20(2009) 275603.[79] P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, X. Chen, Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers, Angew. Chem. Int. Ed. 53(2014) 1252-1257.[80] Y. Pu, L. Lin, D. Wang, J.X. Wang, J. Qian, J.F. Chen, Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals, J. Colloid Interface Sci. 511(2018) 243-250.[81] Y.Q. Zhang, D. Wang, L.L. Zhang, Y. Le, J.X. Wang, J.F. Chen, Facile preparation of α-calcium sulfate hemihydrate with low aspect ratio using high-gravity reactive precipitation combined with salt solution method at atmospheric pressure, Ind. Eng. Chem. Res. 56(2017) 14053-14059.[82] F. Kang, D. Wang, Y. Pu, X.F. Zeng, J.X. Wang, J.F. Chen, Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a highgravity rotating packed bed reactor, Powder Technol. 325(2018) 405-411.[83] X. Yang, J. Leng, D. Wang, Z. Wang, J.-X. Wang, Y. Pu, J. Shui, J.-F. Chen, Synthesis of flower-shaped V2O5:Fe3+ microarchitectures in a high-gravity rotating packed bed with enhanced electrochemical performance for lithium ion batteries, Chem. Eng. Process. 120(2017) 201-206.[84] K.L. Reddy, N. Prabhakar, R. Arppe, J.M. Rosenholm, V. Krishnan, Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging, J. Mater. Sci. 52(2017) 5738-5750.[85] G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infraredto-visible up-conversion phosphors, Nano Lett. 4(2004) 2191-2196.[86] Y. Tian, B. Tian, P. Huang, L. Wang, B. Chen, Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor, RSC Adv. 5(2015) 14123-14128.[87] S. Shah, J.J. Liu, N. Pasquale, J. Lai, H. McGowan, Z.P. Pang, K.B. Lee, Hybrid upconversion nanomaterials for optogenetic neuronal control, Nano 7(2015) 16571-16577.[88] H. Shang, X. Zhang, J. Xu, Y. Han, Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation, Front. Chem. Sci. Eng. 11(2017) 603-612.[89] Z. Mao, C. Yang, Micro-mixing in chemical reactors:A perspective, Chin. J. Chem. Eng. 25(2017) 381-390.[90] G.W. Chu, Y.J. Song, W.J. Zhang, Y. Luo, H.K. Zou, Y. Xiang, J.F. Chen, Micromixing efficiency enhancement in a rotating packed bed reactor with surface-modified nickel foam packing, Ind. Eng. Chem. Res. 54(2015) 1697-1702.[91] J. Leng, J. Chen, D. Wang, J.-X. Wang, Y. Pu, J.-F. Chen, Scalable preparation of Gd2O3:Yb3+/Er3+ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescent films, Ind. Eng. Chem. Res. 56(2017) 7977-7983.[92] Y. Yang, Y. Sun, T. Cao, J. Peng, Y. Liu, Y. Wu, W. Feng, Y. Zhang, F. Li, Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dualmodality upconversion luminescence and SPECT bioimaging, Biomaterials 34(2013) 774-783.[93] P. Du, P. Zhang, S.H. Kang, J.S. Yu, Hydrothermal synthesis and application of Ho3+-activated NaYbF4 bifunctional upconverting nanoparticles for in vitro cell imaging and latent fingerprint detection, Sensors Actuators B Chem. 252(2017) 584-591.[94] K.L. Reddy, M. Rai, N. Prabhakar, R. Arppe, S.B. Rai, S.K. Singh, J.M. Rosenholm, V. Krishnan, Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn2+ doped NaYF4:Yb3+/Ho3+ nanophosphors, RSC Adv. 6(2016) 53698-53704.[95] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis, Nature 437(2005) 121-124.[96] L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, X. Qu, One-step nucleotide-programmed growth of porous upconversion nanoparticles:Application to cell labeling and drug delivery, Nano 6(2014) 1445-1452.[97] P. Qiu, N. Zhou, Y. Wang, C. Zhang, Q. Wang, R. Sun, G. Gao, D. Cui, Tuning lanthanide ion-doped upconversion nanocrystals with different shapes via a one-pot cationic surfactant-assisted hydrothermal strategy, CrystEngComm 16(2014) 1859-1863.[98] R. Sun, P. Qiu, T. Yin, G. Gao, H. Fu, K. Wang, C. Zhang, Potassium sodium tartrateassisted hydrothermal synthesis of BaLuF5:Yb3+/Er3+ nanocrystals, Particuology 24(2015) 164-169.[99] S.L. Pirard, S. Douven, J.P. Pirard, Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process, Front. Chem. Sci. Eng. 11(2017) 280-289.[100] P.K. Fard, E. Afshari, M.Z. Rad, S.T. Dehaghani, A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system, Chin. J. Chem. Eng. 25(2017) 1352-1359.[101] L. Zhang, S. Wu, Z. Liang, H. Zhao, H. Zou, G. Chu, Hydrogen sulfide removal by catalytic oxidative absorption method using rotating packed bed reactor, Chin. J. Chem. Eng. 25(2017) 175-179.[102] H.Y. Shen, Y.Z. Liu, In situ synthesis of hydrophobic magnesium hydroxide nanoparticles in a novel impinging stream-rotating packed bed reactor, Chin. J. Chem. Eng. 24(2016) 1306-1312.[103] S. Mortazavi, Computational analysis of the flow of pseudoplastic power-law fluids in a microchannel plate, Chin. J. Chem. Eng. 25(2017) 1360-1368.[104] M. Akbari, M. Rahimi, M. Faryadi, Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves, Chin. J. Chem. Eng. 25(2017) 1143-1152.[105] K. Huanbutta, P. Sriamornsak, M. Luangtana-Anan, S. Limmatvapirat, S. Puttipipatkhachorn, L.Y. Lim, K. Terada, J. Nunthanid, Application of multiple stepwise spinning disk processing for the synthesis of poly(methyl acrylates) coated chitosan-diclofenac sodium nanoparticles for colonic drug delivery, Eur. J. Pharm. Sci. 50(2013) 303-311.[106] J. Liu, W. Bu, L. Pan, J. Shi, NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica, Angew. Chem. Int. Ed. 52(2013) 4375-4379.[107] Y. Liu, W. Hou, H. Sun, C. Cui, L. Zhang, Y. Jiang, Y. Wu, Y. Wang, J. Li, B.S. Sumerlin, Q. Liu, W. Tan, Thiol-ene click chemistry:A biocompatible way for orthogonal bioconjugation of colloidal nanoparticles, Chem. Sci. 8(2017) 6182-6187.[108] W. Kong, T. Sun, B. Chen, X. Chen, F. Ai, X. Zhu, M. Li, W. Zhang, G. Zhu, F. Wang, A general strategy for ligand exchange on upconversion nanoparticles, Inorg. Chem. 56(2017) 872-877.[109] Z. Chen, H. Chen, H. He, M. Yu, F. Li, Z. Qiang, Z. Zhou, T. Yi, C. Huang, Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels, J. Am. Chem. Soc. 130(2008) 3023-3029.[110] G.K. Das, D.T. Stark, I.M. Kennedy, Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction, Langmuir 30(2014) 8167-8176.[111] X. Li, D. Shen, J. Yang, C. Yao, R. Che, F. Zhang, D. Zhao, Successive layer-bylayer strategy for multi-shell epitaxial growth:Shell thickness and doping position dependence in upconverting optical properties, Chem. Mater. 25(2013) 106-112.[112] J. Shen, K. Li, L. Cheng, Z. Liu, S.T. Lee, J. Liu, Specific detection and simultaneously localized photothermal treatment of cancer cells using layer-bylayer assembled multifunctional nanoparticles, ACS Appl. Mater. Interfaces 6(2014) 6443-6452.[113] A. Escudero, C. Carrillo-Carrión, M.V. Zyuzin, W.J. Parak, Luminescent rare-earthbased nanoparticles:A summarized overview of their synthesis, functionalization, and applications, Top. Curr. Chem. 374(2016) 48.[114] W.F. Lai, A.L. Rogach, W.T. Wong, Molecular design of upconversion nanoparticles for gene delivery, Chem. Sci. 8(2017) 7339-7358.[115] C.T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, S. Andersson-Engels, Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing:Current trends and future challenges, Laser Photonics Rev. 7(2013) (2013) 663-697.[116] W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, X. Chen, Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection, Angew. Chem. Int. Ed. 52(2013) 6671-6676.[117] Q. Liu, W. Feng, T. Yang, T. Yi, F. Li, Upconversion luminescence imaging of cells and small animals, Nat. Protoc. 8(2013) 2033-2044.[118] H.J. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, H.J. Tanke, Detection of cell and tissue surface antigens using up-converting phosphors:A new reporter technology, Anal. Biochem. 267(1999) 30-36.[119] C. Wang, L. Cheng, Z. Liu, Drug delivery with upconversion nanoparticles for multifunctional targeted cancer cell imaging and therapy, Biomaterials 32(2011) 1110-1120.[120] P.Y. Yuan, Y.H. Lee, M.K. Gnanasammandhan, Z. Guan, Y. Zhang, Q.H. Xu, Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging, Nano 4(2012) 5132-5137.[121] M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, C. Huang, Laser scanning upconversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors, Anal. Chem. 81(2009) 930-935.[122] Q. Zhan, S. He, J. Qian, C. Hao, F. Cai, Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield, Theranostics 3(2013) 306-316.[123] Y.F. Wang, G.Y. Liu, L.D. Sun, J.W. Xiao, J.C. Zhou, C.H. Yan, Nd3+-sensitized upconversion nanophosphors:Efficient in vivo bioimaging probes with minimized heating effect, ACS Nano 7(2013) 7200-7206.[124] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, J. Yao, Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles, Adv. Mater. 26(2014) 2831-2837.[125] Q. Wu, B. Huang, X. Peng, S. He, Q. Zhan, Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission, Opt. Express 25(2017) 30885-30894.[126] R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, J. Wrachtrup, Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles, Phys. Rev. B 84(2011) (2011) 153413.[127] R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, S. He, Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy, Opt. Express 23(2015) 2401-32412.[128] M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared upconversion in Tm3+ and Yb3+ doped fluoride nanophosphors, Nano Lett. 8(2008) 3834-3838.[129] Q. Liu, M. Xu, T. Yang, B. Tian, X. Zhang, F. Li, Highly photostable near-IR-excitation upconversion nanocapsules based on triplet-triplet annihilation for in vivo bioimaging application, ACS Appl. Mater. Interfaces 10(2018) 9883-9888.[130] C. Duan, L. Liang, L. Li, R. Zhang, Z.P. Xu, Recent progress in upconversion luminescence nanomaterials for biomedical applications, J. Mater. Chem. B 6(2018) 192-209.[131] J. Rieffel, F. Chen, J. Kim, G. Chen, W. Shao, S. Shao, U. Chitgupi, R. Hernandez, S.A. Graves, R.J. Nickles, Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles, Adv. Mater. 27(2015) 1785-1790.[132] S.A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, R. Weissleder, Upconverting luminescent nanomaterials:Application to in vivo bioimaging, Chem. Commun. (28) (2009) 4188-4190.[133] N.M. Idris, Z. Li, L. Ye, E.K.W. Sim, R. Mahendran, P.C.L. Ho, Y. Zhang, Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles, Biomaterials 30(2009) 5104-5113.[134] L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, D. Cui, Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer, Theranostics 3(2013) 210-222.[135] J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hua, F. Li, Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties, Biomaterials 31(2010) 3287-3295.[136] J.-C. Boyer, M.-P. Manseau, J.I. Murray, F.C.J.M. van Veggel, Surface modification of upconverting NaYbF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window, Langmuir 26(2010) 1157-1164.[137] T. Yang, Y. Sun, Q. Liu, W. Feng, P. Yang, F. Li, Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species, Biomaterials 33(2012) 3733-3742.[138] X. Ge, L. Dong, L. Sun, Z. Song, R. Wei, L. Shi, H. Chen, New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging, Nano 7(2015) 7206-7215.[139] D. Ni, W. Bu, S. Zhang, X. Zheng, M. Li, H. Xing, Q. Xiao, Y. Liu, Y. Hua, L. Zhou, W. Peng, K. Zhao, J. Shi, Single Ho3+-doped upconversion nanoparticles for highperformance T2-weighted brain tumor diagnosis and MR/UCL/CT multimodal imaging, Adv. Funct. Mater. 24(2014) 6613-6620.[140] J. Rieffel, U. Chitgupi, J.F. Lovell, Recent advances in higher-order, multimodal, biomedical imaging agents, Small 11(2015) 4445-4461.[141] S. Sundaramoorthy, A. Garcia Badaracco, S.M. Hirsch, J.H. Park, T. Davies, J. Dumont, M. Shirasu-Hiza, A.C. Kummel, J.C. Canman, Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope, ACS Appl. Mater. Interfaces 9(2017) 7929-7940.[142] Y. Wang, X. Lin, X. Chen, X. Chen, Z. Xu, W. Zhang, Q. Liao, X. Duan, X. Wang, M. Liu, F. Wang, J. He, P. Shi, Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices, Biomaterials 142(2017) 136-148.[143] Y. Sun, W. Feng, P. Yang, C. Huang, F. Li, The biosafety of lanthanide upconversion nanomaterials, Chem. Soc. Rev. 44(2015) 1509-1525. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[4] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[5] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[6] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[7] | Juanjuan Liu, Xiaolong Lu, Guiming Shu, Ke Li, Shuyun Zheng, Xiao Kong, Tao Li, Jun Yang. The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 140-149. |
[8] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[9] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[10] | Yang Gui, Kai Cheng, Ruojiao Wang, Sirui Liu, Chenyang Zhao, Rui Zhang, Ming Wang, Zhen Cheng, Meng Yang. Photoacoustic detection of follicular thyroid carcinoma using targeted Nano-Au-Tripods [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 1-7. |
[11] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[12] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[13] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 116-123. |
[14] | Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 282-296. |
[15] | Aisha Kanwal, Shamaila Sajjad, Sajjad Ahmed Khan Leghari, Muhammad Naeem Khan. Strong interfacial charge transfer between hausmannite manganese oxide and alumina for efficient photocatalysis [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 147-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||