Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (11): 2219-2228.DOI: 10.1016/j.cjche.2018.07.013
• Special issue of Carbon Capture, Utilisation and Storage • Next Articles
Qi Zheng1,2, Xiaoyin Xu1,2, Gregory J. O. Martin2, Sandra E. Kentish1
Received:
2018-01-31
Revised:
2018-07-17
Online:
2018-12-10
Published:
2018-11-28
Contact:
Sandra E. Kentish
Qi Zheng1,2, Xiaoyin Xu1,2, Gregory J. O. Martin2, Sandra E. Kentish1
通讯作者:
Sandra E. Kentish
Qi Zheng, Xiaoyin Xu, Gregory J. O. Martin, Sandra E. Kentish. Critical review of strategies for CO2 delivery to large-scale microalgae cultures[J]. Chin.J.Chem.Eng., 2018, 26(11): 2219-2228.
Qi Zheng, Xiaoyin Xu, Gregory J. O. Martin, Sandra E. Kentish. Critical review of strategies for CO2 delivery to large-scale microalgae cultures[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2219-2228.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.07.013
[1] BP Statistical Review of World Energy (2017).[2] M.A. Carriquiry, X. Du, G.R. Timilsina, Second generation biofuels:Economics and policies, Energy Policy 39(7) (2011) 4222-4234.[3] G. Dragone, B. Fernandes, A.A. Vicente, et al., Third Generation Biofuels From Microalgae, Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 20101355-1366.[4] A. Singh, S.I. Olsen, P.S. Nigam, A viable technology to generate third-generation biofuel, J. Chem. Technol. Biotechnol. 86(11) (2011) 1349-1353.[5] B. Metz, IPCC Special Report on Carbon Dioxide Capture and Storage, IPCC, 2005.[6] C.B. Field, M.J. Behrenfeld, J.T. Randerson, et al., Primary production of the biosphere:Integrating terrestrial and oceanic components, Science 281(5374) (1998) 237-240.[7] A.J. Hunt, E.H.K. Sin, R. Marriott, et al., Generation, capture, and utilization of industrial carbon dioxide, ChemSusChem 3(3) (2010) 306-322.[8] T.J. Lundquist, A Realistic Technology and Engineering Assessment of Algae Biofuel Production, Energy Biosciences Institute, University of California, Berkeley, California, 2010.[9] J. Doucha, F. Straka, K. Livansky, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol. 17(5) (2005) 403-412.[10] F. Acien, J.M. Fernandez, J.J. Magan, et al., Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol. Adv. 30(6) (2012) 1344-1353.[11] W. Klinthong, Y.H. Yang, C.H. Huang, et al., A review:Microalgae and their applications in CO2 capture and renewable energy, Aerosol Air Qual. Res. 15(2015) 712-742.[12] M. Giordano, J. Beardall, J.A. Raven, CO2 concentrating mechanisms in algae:Mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol. 56(2005) 99-131.[13] J.A. Raven, L.A. Ball, J. Beardall, et al., Algae lacking carbon-concentrating mechanisms, Can. J. Bot. 83(7) (2005) 879-890.[14] B. Colman, I.E. Huertas, S. Bhatti, et al., The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae, Funct. Plant Biol. 29(3) (2002) 261-270.[15] M.A. Borowitzka, N.R. Moheimani, Algae for Biofuels and Energy, Springer, 2013.[16] M.R. Badger, G.D. Price, CO2 concentrating mechanisms in cyanobacteria:Molecular components, their diversity and evolution, J. Exp. Bot. 54(383) (2003) 609-622.[17] Y. Wang, D.J. Stessman, M.H. Spalding, The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2:How Chlamydomonas works against the gradient, Plant J. 82(3) (2015) 429-448.[18] E.D. Allen, D.H.N. Spence, The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters, New Phytol. 87(2) (1981) 269-283.[19] T.G. Williams, B. Colman, Quantification of the contribution of CO2, HCO-, and external carbonic anhydrase to photosynthesis at low dissolved inorganic carbon in Chlorella saccharophila, Plant Physiol. 107(1) (1995) 245-251.[20] T.G. Williams, D.H. Turpin, The role of external carbonic anhydrase in inorganic carbon acquisition by Chlamydomonas reinhardii at alkaline pH, Plant Physiol. 83(1) (1987) 92-96.[21] R. van Hille, M. Fagan, L. Bromfield, et al., A modified pH drift assay for inorganic carbon accumulation and external carbonic anhydrase activity in microalgae, J. Appl. Phycol. 26(1) (2014) 377-385.[22] T.J. Smith-Harding, J. Beardall, J.G. Mitchell, The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri, J. Phycol. 53(6) (2017) 1159-1170.[23] J.A. Raven, J. Beardall, The ins and outs of CO2, J. Exp. Bot. 67(1) (2016) 1-13.[24] T. Williams, B. Colman, The effects of pH and dissolved inorganic carbon on external carbonic anhydrase activity in Chlorella saccharophila, Plant Cell Environ. 19(4) (1996) 485-489.[25] E.B. Young, J. Beardall, Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability, Can. J. Bot. 83(7) (2005) 917-928.[26] J.H. Duarte, L.S. Fanka, J.A.V. Costa, Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation, Bioresour. Technol. 214(2016) 159-165.[27] D.H. Tang, W. Han, P. Li, et al., CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresour. Technol. 102(3) (2011) 3071-3076.[28] UNIDO, Carbon capture and storage in industrial applications, Technology Synthesis Report, 2010.[29] P. Brinckerhoff, Accelerating the Uptake of CCS:Industrial Use of Captured Carbon Dioxide, Global CCS Institute, 2011.[30] E.S. Rubin, J.E. Davison, H.J. Herzog, The Cost of CO2 Capture and Storage, 2015.[31] L. Jiang, S. Luo, X. Fan, et al., Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2, Appl. Energy 88(10) (2011) 3336-3341.[32] M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgaebased carbon capture, Int. J. Greenhouse Gas Control 10(2012) 456-469.[33] L. Xu, J. Yuan, Thermodynamic properties calculation of the flue gas based on its composition estimation for coal-fired power plants, Appl. Thermo. Eng. 90(2015) 366-375.[34] S. Van Den Hende, H. Vervaeren, N. Boon, Flue gas compounds and microalgae:(Bio-) chemical interactions leading to biotechnological opportunities, Biotechnol. Adv. 30(6) (2012) 1405-1424.[35] C.-Y. Kao, T.Y. Chen, Y.B. Chang, et al., Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp, Bioresour. Technol. 166(2014) 485-493.[36] J.S. Lee, D.K. Kim, J.P. Lee, et al., Effects of SO2 and NO on growth of Chlorella sp. KR-1, Bioresour. Technol. 82(1) (2002) 1-4.[37] H. Nagase, K.I. Yoshihara, K. Eguchi, et al., Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae, Biochem. Eng. J. 7(3) (2001) 241-246.[38] A. Toledo-Cervantes, T. Morales, A. Gonzalez, et al., Long-term photosynthetic CO2 removal from biogas and flue-gas:Exploring the potential of closed photobioreactors for high-value biomass production, Sci. Total Environ. 640-641(2018) 1272-1278.[39] P. Varshney, J. Beardall, S. Bhattacharya, et al., Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide, Algal Res. 30(2018) 28-37.[40] R. Garcia-Cubero, J. Moreno-Fernandez, M. Garcia-Gonzalez, Potential of Chlorella vulgaris to abate flue gas, Waste Biomass Valoriz. (2017) 1-5.[41] D. Hess, K. Napan, B.T. McNeil, et al., Quantification of effects of flue gas derived inorganic contaminants on microalgae growth system and end fate of contaminants, Algal Res. 25(2017) 68-75.[42] M.K. Ji, H.S. Yun, J.H. Hwang, et al., Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production, Environ. Technol. 38(16) (2017) 2085-2092.[43] A.K. Vuppaladadiyam, J.G. Gao, N. Florin, et al., Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization, ChemSusChem 11(2) (2018) 334-355.[44] E.C. Camargo, A.T. Lombardi, Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana, J. Appl. Phycol. 30(2) (2018) 861-871.[45] X.K. Li, J.L. Xu, Y. Guo, et al., Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT, Bioresour. Technol. 190(2015) 339-344.[46] X. Yang, W. Xiang, F. Zhang, et al., Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas, Sheng Wu Gong Cheng Xue Bao 29(3) (2013) 370-381.[47] T. Li, G. Xu, J. Rong, et al., The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases, J. Plant Physiol. 195(2016) 73-79.[48] Y. Guo, Z. Yuan, J. Xu, et al., Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas, Algal Res. 26(2017) 225-233.[49] E.M. Radmann, F.V. Camerini, T.D. Santos, et al., Isolation and application of SOx and NOx resistant microalgae in biofixation of CO2 from thermoelectricity plants, Energy Convers. Manag. 52(10) (2011) 3132-3136.[50] J.C. Quinn, K.B. Catton, S. Johnson, et al., Geographical assessment of microalgae biofuels potential incorporating resource availability, BioEnergy Res. 6(2) (2013) 591-600.[51] A.L. Stephenson, E. Kazamia, J.S. Dennis, et al., Life-cycle assessment of potential algal biodiesel production in the United Kingdom:A comparison of raceways and air-lift tubular bioreactors, Energy Fuel 24(7) (2010) 4062-4077.[52] K.L. Kadam, Power plant flue gas as a source of CO2 for microalgae cultivation:Economic impact of different process options, Energy Convers. Manag. 38(1997) S505-S510.[53] Z. Chi, J.V. O'Fallon, S. Chen, Bicarbonate produced from carbon capture for algae culture, Trends Biotechnol. 29(11) (2011) 537-541.[54] Z. Chi, Y. Xie, F. Elloy, et al., Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium, Bioresour. Technol. 133(2013) 513-521.[55] I. Pancha, K. Chokshi, T. Ghosh, et al., Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077, Bioresour. Technol. 193(2015) 315-323.[56] M. Nunez, A. Quigg, Changes in growth and composition of the marine microalgae Phaeodactylum tricornutum and Nannochloropsis salina in response to changing sodium bicarbonate concentrations, J. Appl. Phycol. 28(4) (2016) 2123-2138.[57] M. Nayak, W.I. Suh, B. Lee, et al., Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide, Energy Convers. Manag. 156(2018) 45-52.[58] D. White, A. Pagarette, P. Rooks, et al., The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures, J. Appl. Phycol. 25(1) (2013) 153-165.[59] Z. Chi, F. Elloy, Y. Xie, et al., Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system, Appl. Biochem. Biotechnol. (2013) 1-11.[60] G.A. Zavarzin, T.N. Zhilina, V.V. Kevbrin, The alkaliphilic microbial community and its functional diversity, Microbiology 68(5) (1999) 503-521.[61] A.M. Santos, P.P. Lamers, M. Janssen, et al., Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions, Algal Res. 2(3) (2013) 204-211.[62] K.A. Canon-Rubio, C.E. Sharp, J. Bergerson, et al., Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology, Appl. Microbiol. Biotechnol. 100(4) (2016) 1611-1622.[63] A.M. Santos, M. Jansson, P.P. Lamers, et al., Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions, Bioresour. Technol. 104(2012) 593-599.[64] A. Vadlamani, S. Viamajala, B. Pendyala, et al., Cultivation of microalgae at extreme alkaline pH conditions:A novel approach for biofuel production, ACS Sustain. Chem. Eng. 5(8) (2017) 7284-7294.[65] C.E. Sharp, Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities, Biotechnol. Biofuels 10(1) (2017) 84.[66] J.D. Noel, W.J. Koros, B.A. McCool, et al., Membrane-mediated delivery of carbon dioxide for consumption by photoautotrophs:Eliminating thermal regeneration in carbon capture, Ind. Eng. Chem. Res. 51(12) (2012) 4673-4681.[67] Q. Zheng, G.J. Martin, S.E. Kentish, Energy efficient transfer of carbon dioxide from flue gases to microalgal systems, Energy Environ. Sci. 9(3) (2016) 1074-1082.[68] Q. Zheng, G.J.O. Martin, Y. Wu, et al., The use of monoethanolamine and potassium glycinate solvents for CO2 delivery to microalgae through a polymeric membrane system, under review, Biochem. Eng. J. 128(2017) 126-133.[69] K.A. Mumford, Y. Wu, K.H. Smith, et al., Review of solvent based carbon-dioxide capture technologies, Front. Chem. Sci. Eng. 9(2) (2015) 125-141.[70] R.C. Pate, Resource requirements for the large-scale production of algal biofuels, Biofuels 4(4) (2013) 409-435.[71] E.R. Venteris, R.L. Skaggs, M.S. Wigmosta, et al., A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction, Biomass Bioenergy 64(0) (2014) 276-290.[72] G. Xu, F. Liang, Y. Yang, et al., An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies 7(5) (2014) 3484-3502.[73] L. Rodolfi, G.C. Zittelli, N. Bassi, et al., Microalgae for oil:Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 102(1) (2009) 100-112.[74] C.-Y. Chen, K.l. Yeh, R. Aisyah, et al., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production:A critical review, Bioresour. Technol. 102(1) (2011) 71-81.[75] C. Ugwu, H. Aoyagi, H. Uchiyama, Photobioreactors for mass cultivation of algae, Bioresour. Technol. 99(10) (2008) 4021-4028.[76] M. Anjos, B.D. Fernandez, A.A. Vicente, et al., Optimization of CO2 bio-mitigation by Chlorella vulgaris, Bioresour. Technol. 139(2013) 149-154.[77] C.L. Chiang, C.M. Lee, P.C. Chen, Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes, Bioresour. Technol. 102(9) (2011) 5400-5405.[78] W.B. Zimmerman, V. Tesar, H.C.H. Bandulasena, Towards energy efficient nanobubble generation with fluidic oscillation, Curr. Opin. Colloid Interface Sci. 16(4) (2011) 350-356.[79] R. Singh, S. Sharma, Development of suitable photobioreactor for algae production-A review, Renew. Sust. Energ. Rev. 16(4) (2012) 2347-2353.[80] J. Cheng, Z. Yang, Y. Huang, et al., Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant, Bioresour. Technol. 190(2015) 235-241.[81] O. Jorquera, A. Kiperstok, E.A. Sales, et al., Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol. 101(4) (2010) 1406-1413.[82] X. Ma, S. Yu, Q. Xu, et al., Biosurfactants for microbubble preparation and application, Int. J. Mol. Sci. 12(1) (2011) 462.[83] M. Takahashi, K. Chiba, P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, J. Phys. Chem. B 111(6) (2007) 1343-1347.[84] A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere 84(9) (2011) 1175-1180.[85] K. Terasaka, A. Hirabayashi, T. Nishino, et al., Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chem. Eng. Sci. 66(14) (2011) 3172-3179.[86] W.B. Zimmerman, B.N. Hewakandamby, V. Tesar, et al., On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation, Food Bioprod. Process. 87(C3) (2009) 215-227.[87] M.K.H. Al-Mashhadani, H.C.H. Bandulasena, W.B. Zimmerman, CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation, Ind. Eng. Chem. Res. 51(4) (2012) 1864-1877.[88] J. Tramper, J.B. Williams, D. Joustra, et al., Shear sensitivity of insect cells in suspension, Enzym. Microb. Technol. 8(1) (1986) 33-36.[89] L.H. Fan, Y.T. Zhang, L. Zhang, et al., Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, J. Membr. Sci. 325(1) (2008) 336-345.[90] V. Mortezaeikia, R. Yegani, O. Tavakoli, Membrane-sparger vs. membrane contactor as a photobioreactors for carbon dioxide biofixation of Synechococcus elongatus in batch and semi-continuous mode, J. CO2 Util. 16(2016) 23-31.[91] L.H. Fan, Y. Zhang, L. Cheng, et al., Optimization of carbon dioxide fixation by Chlorelia vulgaris cultivated in a membrane-photobioreactor, Chem. Eng. Technol. 30(8) (2007) 1094-1099.[92] L.H. Cheng, L. Zhang, H. Chen, et al., Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep. Purif. Technol. 50(3) (2006) 324-329.[93] H.W. Kim, A.K. Marcus, J.H. Shin, et al., Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR), Environ. Sci. Technol. 45(11) (2011) 5032-5038.[94] A. Kumar, X. Yuan, A.K. Sahu, et al., A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment:A process engineering approach, J. Chem. Technol. Biotechnol. 85(3) (2010) 387-394.[95] H.-W. Kim, J. Cheng, B.E. Rittmann, Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal, Bioresour. Technol. 204(2016) 32-37. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[4] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[5] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[6] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[7] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[8] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[9] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[10] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[11] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[12] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[13] | Shan Liu, Wenqi Zhong, Xi Chen, Li Sun, Lukuan Yang. Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 343-352. |
[14] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[15] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||