Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (12): 2581-2591.DOI: 10.1016/j.cjche.2018.06.004
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Xi Wu, Shiming Xu, Debing Wu, Huan Liu
Received:
2018-02-26
Revised:
2018-05-20
Online:
2019-01-09
Published:
2018-12-28
Contact:
Xi Wu
Supported by:
Supported by the National Natural Science Foundations of China (51606024, 51776029), and the Fundamental Research Funds for Central Universities (DUT17JC31), the China Scholarship Council (iCET2017 Program).
Xi Wu, Shiming Xu, Debing Wu, Huan Liu
通讯作者:
Xi Wu
基金资助:
Supported by the National Natural Science Foundations of China (51606024, 51776029), and the Fundamental Research Funds for Central Universities (DUT17JC31), the China Scholarship Council (iCET2017 Program).
Xi Wu, Shiming Xu, Debing Wu, Huan Liu. Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2,2,2-trifluoroethanol, 2-propanol and their binary blends[J]. Chin.J.Chem.Eng., 2018, 26(12): 2581-2591.
Xi Wu, Shiming Xu, Debing Wu, Huan Liu. Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2,2,2-trifluoroethanol, 2-propanol and their binary blends[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2581-2591.
[1] R.E. Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile, Nature 174(1954) 660-660. [2] P. Dlugolecki, K. Nymeijer, S. Metz, M. Wessling, Current status of ion exchange membranes for power generation from salinity gradients, J. Membr. Sci. 319(1-2) (2008) 214-222. [3] E. Guler, W.V. Baak, M. Saakes, K. Nijmeijer, Monovalent-ion-selective membranes for reverse electrodialysis, J. Membr. Sci. 55(4) (2014) 254-270. [4] H.I. Jeong, H.J. Kim, D.K. Kim, Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization, Energy 68(4) (2014) 229-237. [5] A. Cipollina, G. Micale, Sustainable Energy from Salinity Gradients, Woodhead Publishing, Duxford, 2016. [6] M. Rahimi, A. D'Angelo, C.A. Gorski, O. Scialdone, B.E. Logan, Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery, J. Power Sources 351(2017) 45-50. [7] Xu S.M., Wu X., Wu D.B., A novel generation method and device powered by low grade heat energy. Chinese Pat. ZL 201510694726.4(2017). [8] X. Wu, S.M. Xu, D.B. Wu, H. Liu, S.Q. Chen, Methodology of assessing working mediums availability for a novel heat-power conversion system with reverse electrodialysis technology, J. CIESC 57(S2) (2016) 326-332(in Chinese). [9] Y.Y. Xie, W.X. Zhang, S. Gu, Y.S. Yan, Z.F. Ma, Process engineering in electrochemical energy devices innovation, Chin. J. Chem. Eng. 24(1) (2016) 39-47. [10] J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, A. Daniilidis, D.A. Vermaas, R. Herber, K. Nijmeijer, Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis, Renew. Energy 64(2) (2014) 123-131. [11] N.Y. Yip, D.A. Vermaas, K. Nijmeijer, M. Elimelech, Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients, Environ. Sci. Technol. 48(9) (2014) 4925-4936. [12] M. Bevacqua, A. Tamburini, M. Papapetrou, A. Cipollina, G. Micale, A. Piacentino, Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion, Energy 137(2017) 1293-1307. [13] X. Luo, X. Cao, Y. Mo, K. Xiao, X. Zhang, P. Liang, Power generation by coupling reverse electrodialysis and ammonium bicarbonate:implication for recovery of waste heat, Electrochem. Commun. 19(1) (2012) 25-28. [14] X. Wu, S.M. Xu, D.B. Wu, Ternary working fluids for a heat-power conversion system with reverse electrodialysis technology. Chinese Pat. ZL 201610126962.0(2018). [15] PubChem Database, Compound summary for CID 517044:potassium acetate. U.S. National Library of Medicine.[2017-9-15], https://pubchem.ncbi.nlm.nih.gov/compound/Potassium_acetate#section=Top. [16] D.R. Lide, Handbook of Chemistry and Physics, 84th ed. CRC Press, Florida, 2003. [17] J.G. Speiht, LANGE's Handbook of Chemistry, 15th ed. Mcgraw-Hill, New York, 2005. [18] A. Apelblat, E. Manzurola, The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates, J. Chem. Thermodyn. 39(8) (2007) 1176-1181. [19] D. Meranda, W.F. Furter, Vapor-liquid equilibrium data for system:ethanol-water saturated with potassium acetate, Can. J. Chem. Eng. 44(5) (1966) 298-300. [20] V.K.L. Mer, J.P. Chittum, The conductance of salts (potassium acetate) and the dissociation constant of acetic acid in deuterium oxide, J. Am. Chem. Soc. 58(9) (2002) 1642-1644. [21] T.S. Murthy, K. Lakshminarayana, Conductance studies of alkali metal acetates in acetic acid-acetonitrile mixtures, Phys. Chem. Liq. 20(2-3) (1989) 167-176. [22] R.S. Sah, B. Sinha, M.N. Roy, Ion association and solvation behavior of some alkali metal acetates in aqueous 2-butanol solutions at T=298.15, 303.15 and 308.15 K, Fluid Phase Equilib. 307(2) (2011) 216-221. [23] National Institute of Standards and Technology, NIST chemistry webbook, SRD 69,[2018-05-18] http://webbook.nist.gov/chemistry/. [24] A.D. John, Lange's Handbook of Chemistry, 15th ed. McGraw-Hill, New York, 1998. [25] L. Wu, Q. Zhang, Error Analysis and Data Processing, Tsinghua University Press, Beijing, 2010(in Chinese). [26] National Institute of Metrology, Electrolytic conductivity meters, Chinese Metrology Verification Regulation JJG 2007, pp. 376-2007, (in Chinese). [27] Y.G. Li, J.F. Lu, The Theory of Electrolyte Solutions, Tsinghua University Press, Beijing, 2005(in Chinese). [28] C.H. Hammann, A. Hamnett, W. Vielstich, Electrochemistry, 2rd ed. Wiley-VCH Press, Weinheim, 2007. [29] R.A. Robinson, H.S. Harned, Some aspects of the thermodynamics of strong electrolytes from electromotive force and vapor pressure measurements, Chem. Rev. 28(3) (1941) 419-476. [30] Wikipedia, Bjerrum length,[2017-02-26] https://en.wikipedia.org/wiki/Bjerrum_length. [31] Y. Tanaka, Y.F. Xiao, S. Matsuo, Relative permittivity of fluoroalcohols at temperatures from 293 to 323 K and pressures up to 50 MPa, Fluid Phase Equilib. 170(1) (2000) 139-149. [32] G. Gente, C.L. Mesa, Water-trifluoroethanol mixtures:some physicochemical properties, J. Solut. Chem. 29(11) (2000) 1159-1172. [33] G. Gente, C.L. Mesa, R. Muzzalupo, G.A. Ranieri, Micelle formation and phase equilibria in a water-trifluoroethanol-fluorocarbon surfactant system, Langmuir 16(21) (2000) 7914-7919. [34] R.M. Fuoss, Conductance-concentration function for the paired ion model, J. Phys. Chem. 82(22) (1978) 2427-2440. [35] R.M. Diamond, The activity coefficients of strong electrolytes. The halide salts, J. Am. Chem. Soc. 80(18) (1958) 4808-4812. [36] B.S. Krumgalz, Ion-solvent interactions and ionic association in ethanol solutions, J. Solut. Chem. 11(4) (1982) 283-293. [37] B.S. Krumgalz, Interaction of tetraalkylammonium and some other organic ions with solvent molecules, J. Gen. Chem. USSR 4(1974) 1585-1588. [38] H. Chen, L.S. Wang, B. Jiang, M.Y. Li, Measurements of conductivity for low concentration strongelectrolytes in organic solvents (I) LiBr, LiCl, and LiNO3 in alcohols, Chin. J. Chem. Eng. 20(5) (2012) 1024-1033. [39] G.H. Gao, H.B. Shi, Y.X. Yu, Mutual diffusion coefficients of concentrated 1:1 electrolyte from the modified mean spherical approximation, Fluid Phase Equilib. 256(1) (2007) 105-111. [40] O. Bernard, W. Kunz, P. Turq, L. Blum, Self-diffusion in electrolyte solutions using the mean spherical approximation, J. Phys. Chem. 96(1) (1992) 398-403. [41] O. Bernard, W. Kunz, P. Turq, L. Blum, Conductance in electrolyte solutions using the mean spherical approximation, J. Phys. Chem. 96(9) (1992) 3833-3840. [42] J.F. Dufreche, O. Bernard, P. Turq, Transport equations for concentrated electrolyte solutions:reference frame, mutual diffusion, J. Chem. Phys. 116(5) (2002) 2085-2097. [43] H.B. Shi, Y.X. Yu, G.H. Gao, Brownian dynamics simulation of self-diffusion coefficients of electrolyte solutions, Chem. J. Chin. Univ. 25(6) (2004) 2317-2321(In Chinese). [44] H.B. Shi, Y.X. Yu, G.H. Gao, Study on the transport properties of aqueous electrolyte solution by brownian dynamics simulation, Acta Chim. Sin. 63(5) (2005) 358-362(In Chinese). [45] Y.C. Wu, W.F. Koch, E.C. Zhong, H.L. Friedman, The cross-square rule for transport in electrolyte mixtures, J. Phys. Chem. 92(6) (1988) 1692-1695. [46] T.F. Young, M.B. Smith, Thermodynamic properties of mixtures of electrolytes in aqueous solutions, J. Phys. Chem. 58(9) (1954) 716-724. [47] D.G. Miller, Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures, J. Phys. Chem. 100(4) (1996) 1220-1226. [48] Y.F. Chen, Y.F. Hu, J.G. Qi, Y. Sun, Z.Y. Li, Densities, conductivities, and viscosities of aqueous solutions of N-hexyl, methylpyrrolidinium bromide and N-butyl, methylpyrrolidinium bromide at different temperatures, Chin. J. Chem. Eng. 23(1) (2015) 213-218. [49] Y.F. Hu, X.M. Zhang, J.G. Li, Q.Q. Liang, Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions, J. Phys. Chem. B 112(48) (2008) 15376-15381. [50] Q.Q. Liang, Y.F. Hu, W.J. Yue, Electrical conductivities for four ternary electrolyte aqueous solutions with one or two ionic liquid components at ambient temperatures and pressure, Chin. J. Chem. Eng. 23(6) (2015) 873-879. [51] D.A. Vermaas, M. Saakes, K. Nijmeijer, Early detection of preferential channeling in reverse electrodialysis, Electrochim. Acta 117(2014) 9-17. [52] S.M. Xu, D.B. Wu, X. Wu, J.Y. Hu, H. Liu, H.J. Zhang, S.Q. Chen, J. Chen, Experimental study on power generated by solution concentration difference changing with lithium chloride aqueous, J. Dalian Univ. Tech. 57(4) (2017) 337-344(in Chinese). [53] M. Turek, B. Bandura, P. Dydo, Power production from coal-mine brine utilizing reversed electrodialysis, Desalination 221(1-3) (2008) 462-466. [54] J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis:performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci. 327(1) (2009) 136-144. [55] D.A. Vermaas, M. Saakes, K. Nijmeijer, Doubled power density from salinity gradients at reduced intermembrane distance, Environ. Sci. Technol. 45(16) (2011) 7089-7095. |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Abdelgadir Bashir Banaga, Yan-Bin Li, Zhi-Hao Li, Bao-Chang Sun, Guang-Wen Chu. Experimental investigation of the mixing efficiency via intensity of segregation along axial direction of a rotating bar reactor [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 153-159. |
[4] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[5] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[6] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[7] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[8] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[9] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[10] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[11] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[12] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[13] | Jianhui Zhou, Guohao Du, Jianfeng Hu, Xin Lai, Shan Liu, Zhengguo Zhang. The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 11-21. |
[14] | Bo Pan, Biao Liu, Shaona Wang, Yeqing Lv, Hao Du, Yi Zhang. Understanding the hydroxyl adsorption behavior at Pt electrode surface in high-temperature alkaline solutions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 173-179. |
[15] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 755
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||