Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (1): 191-199.DOI: 10.1016/j.cjche.2018.03.023
• Biotechnology and Bioengineering • Previous Articles Next Articles
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi
Received:
2017-11-14
Revised:
2018-02-24
Online:
2019-01-31
Published:
2019-01-28
Contact:
Seyed-Mortaza Robatjazi
Supported by:
Supported by the Malek-Ashtar University of Technology (925826018, 2015).
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi
通讯作者:
Seyed-Mortaza Robatjazi
基金资助:
Supported by the Malek-Ashtar University of Technology (925826018, 2015).
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies[J]. Chin.J.Chem.Eng., 2019, 27(1): 191-199.
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 191-199.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.03.023
[1] P. Mulchandani, A. Mulchandani, I. Kaneva, W. Chen, Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode, Biosens. Bioelectron. 14(1) (1999) 77-85.[2] S.M. Robatjazi, S.A. Shojaosadati, R. Khalilzadeh, E.V. Farahani, N. Balochi, Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria, Bioresour. Technol. 104(2012) 6-11.[3] G. Farnoosh, A.M. Latifi, A review on engineering of organophosphorus hydrolase (OPH) enzyme, J. Appl. Biotechnol. Rep. 1(1) (2014) 1-10.[4] Y. Gao, Y.B. Truong, P. Cacioli, P. Butler, I.L. Kyratzis, Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles, Enzym. Microb. Technol. 54(2014) 38-44.[5] R. Erginer, L. Toppare, S. Alkan, U. Bakir, Immobilization of invertase in functionalized copolymer matrices, React. Funct. Polym. 45(3) (2000) 227-233.[6] D. Kayrak-Talay, U. Akman, O. Hortacsu, Glucose oxidase immobilization on conducting polymers in supercritical CO2 environment:an exploratory study, J. Supercrit. Fluids 42(2) (2007) 273-281.[7] S.M. Robatjazi, S.A. Shojaosadati, R. Khalilzadeh, E.V. Farahani, Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatal. Biotransform. 28(5-6) (2010) 304-312.[8] X. Li, X. Wang, G. Ye, W. Xia, X. Wang, Polystyrene-based diazonium salt as adhesive:a new approach for enzyme immobilization on polymeric supports, Polymer 51(4) (2010) 860-867.[9] C. Pezzella, M.E. Russo, A. Marzocchella, P. Salatino, G. Sannia, Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation, Biomed. Res. Int. 2014(2014), 308613. (11 pp.).[10] I. Stolarzewicz, E. Biaecka-Florjanczyk, E. Majewska, J. Krzyczkowska, Immobilization of yeast on polymeric supports, Chem. Biochem. Eng. Q. 25(1) (2011) 135-144.[11] D.H. Zhang, L.X. Yuwen, L.J. Peng, Parameters affecting the performance of immobilized enzyme, J. Chem. 2013(2013), 946248. (7 pp.).[12] Y. Liu, J.Y. Chen, Enzyme immobilization on cellulose matrixes, J. Bioact. Compat. Polym. 31(6) (2016) 1-15.[13] S. Varavinit, N. Chaokasem, S. Shobsngob, Immobilization of a thermostable alpha amylase, ScienceAsia 28(2002) 247-251.[14] J. Aniulyte, J. Bryjak, J. Liesiene, Activation of cellulose-based carriers with pentaethylenehexamine, Proc. Est. Acad. Sci. Chem. 55(2) (2006) 61-69.[15] S. Sulaiman, M.N. Mokhtar, M.N. Naim, A.S. Baharuddin, A. Sulaiman, A review:potential usage of cellulose nanofibers (CNFs) for enzyme immobilization via covalent interactions, Appl. Biochem. Biotechnol. 175(4) (2015) 1817-1842.[16] D. Stollner, F.W. Scheller, A. Warsinke, Activation of cellulose membranes with 1,1'-carbonyldiimidazole or 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as a basis for the development of immunosensors, Anal. Biochem. 304(2) (2002) 157-165.[17] S. Nisha, K.S. Arun, N. Gobi, A review on methods, application and properties of immobilized enzyme, Chem. Sci. Rev. Lett. 1(3) (2012) 148-155.[18] X. Liu, L. Lei, Y. Li, H. Zhu, Y. Cui, H. Hu, Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase, Biochem. Eng. J. 56(3) (2011) 142-149.[19] K.A. Brown, Phosphotriesterases of flavobacterium sp, Soil Biol. Biochem. 12(2) (1980) 105-112.[20] S.C. Wu, Y.K. Lia, Application of bacterial cellulose pellets in enzyme immobilization, J. Mol. Catal. B Enzym. 54(3-4) (2008) 103-108.[21] M.N. Belgacem, A. Gandini, Surface modification of cellulose fibres, Polim. Cienc. Tecnol. 15(2) (2005) 114-121.[22] C. Aymard, A. Belarbi, Kinetics of thermal deactivation of enzymes:a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism, Enzym. Microb. Technol. 27(8) (2000) 612-618.[23] F. Secundo, Conformational changes of enzymes upon immobilization, Chem. Soc. Rev. 42(15) (2013) 6250-6261.[24] U. Guzik, K. Hupert-Kocurek, D. Wojcieszynska, Immobilization as a strategy for improving enzyme properties-application to oxidoreductases, Molecules 19(7) (2014) 8995-9018.[25] S. Nigam, S. Mehrotra, B. Vani, R. Mehrotra, Lipase immobilization techniques for biodiesel production:an overview, Int. J. Renew. Energy Biofuels 2014(2014), 664708. (16 pp.).[26] M. Misson, H. Zhang, B. Jin, Nanobiocatalyst advancements and bioprocessing applications, J. R. Soc. Interface 12(102) (2015) 1-20.[27] O. Alptekin, S.S. Tukel, D. Yildirim, D. Alagoz, Covalent immobilization of catalase onto spacer arm attached modified florisil:characterization and application to batch and plug-flow type reactor systems, Enzym. Microb. Technol. 49(6-7) (2011) 547-554.[28] S. Karav, J.L. Cohen, D. Barile, J.M. de Moura Bell, Recent advances in immobilization strategies for glycosidases, Biotechnol. Prog. 33(1) (2017) 104-112.[29] K. Singh, A.M. Kayastha, Optimal immobilization of α-amylase from wheat (Triticum aestivum) onto DEAE-cellulose using response surface methodology and its characterization, J. Mol. Catal. B Enzym. 104(2014) 75-81.[30] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip. 29(2) (2015) 205-220.[31] D.H. Zhang, Y.Q. Li, L.J. Peng, N. Chen, Lipase immobilization on magnetic microspheres via spacer arms:effect of steric hindrance on the activity, Biotechnol. Bioprocess Eng. 19(5) (2014) 838-843.[32] M.A. Rahman, U. Culsum, A. Kumar, H. Gao, N. Hu, Immobilization of a novel cold active esterase onto Fe3O4~ cellulosenano-composite enhances catalytic properties, Int. J. Biol. Macromol. 87(2016) 488-497.[33] H.C. Chan, C.H. Chia, S. Zakaria, I. Ahmad, A. Dufresne, Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood, Bioresources 8(1) (2013) 785-794.[34] Y. Sun, L. Lin, H. Deng, J. Li, B. He, R. Sun, P. Ouyang, Structural changes of bamboo cellulose in formic acid, Bioresources 3(2) (2008) 297-315.[35] B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, O. Krim, Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite:comparative study, world, J. Environ. Eng. 3(4) (2015) 95-110.[36] T. Kondo, The assignment of IR absorption bands due to free hydroxyl groups in cellulose, Cellulose 4(1997) 281-292.[37] M.M.M. Elnashar, M.E. Hassan, Novel epoxy activated hydrogels for solving lactose intolerance, Biomed. Res. Int. 2014(2014), 817985.[38] E. Cakmakci, O. Danis, S. Demir, Y. Mulazim, M.V. Kahraman, Alpha-amylase immobilization on epoxy containing thiolene photocurable materials, J. Microbiol. Biotechnol. 23(2) (2013) 205-210.[39] S. Boufi, M. Rei Vilar, V. Parra, A.M. Ferraria, A.M. Botelho do Rego, Grafting of porphyrins on cellulose nanometric films, Langmuir 24(14) (2008) 7309-7315.[40] S. Alila, A.M. Ferraria, A.M. Botelho do Rego, S. Boufi, Controlled surface modification of cellulose fibers by amino derivatives using N,N'-carbonyldiimidazole as activator, Carbohydr. Polym. 77(3) (2009) 553-562.[41] Y. Wei, H. Luo, Y. Chang, H. Yu, Z. Shen, Reversible immobilization of cephalosporin C acylase on epoxy supports coated with polyethyleneimine, Biocatal. Biotransform. 33(5-6) (2015) 250-259.[42] S. Li, J. Hu, B. Liu, Use of chemically modified PMMA microspheres for enzyme immobilization, Biosystems 77(1-3) (2004) 25-32.[43] J. Chung, E.T. Hwang, H. Gang, M.B. Gu, Magnetic-separable robust microbeads using a branched polymer for stable enzyme immobilization, React. Funct. Polym. 73(1) (2013) 39-45.[44] H. Wu, C. Zhang, Y. Liang, J. Shi, X. Wang, Z. Jiang, Catechol modification and covalent immobilization of catalase on titania submicrospheres, J. Mol. Catal. B Enzym. 92(2013) 44-50.[45] R.D. Richins, A. Mulchandani, W. Chen, Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes, Biotechnol. Bioeng. 69(6) (2000) 591-596.[46] K. El-Boubbou, D.A. Schofield, C.C. Landry, Enhanced enzymatic thermal stability and activity in functionalized mesoporous silica monitored by 31P NMR, Adv. Healthc. Mater. 1(2) (2012) 183-188.[47] P.B. Dennis, A.Y. Walker, M.B. Dickerson, D.L. Kaplan, R.R. Naik, Stabilization of organophosphorus hydrolase by entrapment in silk fibroin:formation of a robust enzymatic material suitable for surface coatings, Biomacromolecules 13(7) (2012) 2037-2045.[48] J.K. Raynes, F.G. Pearce, S.J. Meade, J.A. Gerrard, Immobilization of organophosphate hydrolase on an amyloid fibril nanoscaffold:towards bioremediation and chemical detoxification, Biotechnol. Prog. 27(2) (2011) 360-367.[49] K.E. LeJeune, A.J. Mesiano, S.B. Bower, J.K. Grimsley, J.R. Wild, A.J. Russell, Dramatically stabilized phosphotriesterase-polymers for nerve agent degradation, Biotechnol. Bioeng. 54(2) (1997) 105-114.[50] B. Karagoz, G. Bayramoglu, B. Altintas, N. Bicak, M.Y. Arica, Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide:immobilized laccase for benzidine based dyes degradation, Bioresour. Technol. 102(13) (2011) 6783-6790.[51] P.M.B. Chagas, J.A. Torres, M.C. Silva, F.G.E. Nogueira, C.D. Santos, A.D. Correa, Catalytic stability of turnip peroxidase in free and immobilized form on chitosan beads, Int. J. Curr. Microbiol. Appl. Sci. 3(11) (2014) 576-595.[52] S.R. Caldwell, F.M. Raushel, Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta, Biotechnol. Bioeng. 37(2) (1991) 103-109.[53] S.M. Robatjazi, M. Reihani, S. Mahboudi, S.M. Hasanpour, M.A.N. Khalili, Immobilization of organophosphorus hydrolase enzyme on ferric magnetic nanoparticles and investigation of immobilized enzyme stability, J. Microbiol. Biotechnol. Food Sci. 6(6) (2017) 1295-1299.[54] M.M. Milani, A.S. Lotfi, A. Mohsenifar, P. Mikaili, N. Kamelipour, J. Dehghan, Enhancing organophosphorus hydrolase stability by immobilization on chitosan beads containing glutaraldehyde, Res. J. Environ. Toxicol. 9(1) (2015) 34-44.[55] S.K. Falahati-Pour, A.S. Lotfi, G. Ahmadian, A. Baghizadeh, Covalent immobilization of recombinant organophosphorus hydrolase on spores of Bacillus subtilis, J. Appl. Microbiol. 118(4) (2015) 976-988.[56] H.Y. Zeng, X.Y. Liu, P. He, D.H. Peng, B. Fan, K. Xia, Lipase adsorption on woven nylon-6 membrane:optimization, kinetic and thermodynamic analyses, Biocatal. Biotransform. 32(3) (2014) 188-197.[57] E. Fatarella, D. Spinelli, M. Ruzzante, R. Pogni, Nylon 6 film and nanofiber carriers:preparation and laccase immobilization performance, J. Mol. Catal. B Enzym. 102(2014) 41-47.[58] M. Kapoor, R. Rajagopal, Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorous hydrolase, Int. Biodeterior. Biodegrad. 65(6) (2011) 896-901.[59] X.Y. Yan, Y.J. Jiang, S.P. Zhang, J. Gao, Y.F. Zhang, Dual-functional OPH-immobilized polyamide nanofibrous membrane for effective organophosphorus toxic agents protection, Biochem. Eng. J. 98(2015) 47-55.[60] S. Rauf, A. Ihsan, K. Akhtar, M.A. Ghauri, M. Rahman, M.A. Anwar, A.M. Khalid, Glucose oxidase immobilization on a novel cellulose acetate-polymethylmethacrylate membrane, J. Biotechnol. 121(3) (2006) 351-360.[61] R. Karami, A. Mohsenifar, S.M. Mesbah Namini, N. Kamelipour, T. Rahmani-Cherati, T. Roodbar Shojaei, M. Tabatabaei, A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles, Prep. Biochem. Biotechnol. 46(6) (2016) 559-566.[62] V.A. Pedrosa, S. Paliwal, S. Balasubramanian, D. Nepal, V. Davis, J. Wild, E. Ramanculov, A. Simonian, Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes, Colloids Surf. B:Biointerfaces 77(1) (2010) 69-74. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[2] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 40-52. |
[3] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[4] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 119-125. |
[5] | Shiyong Xing, Yan Cui, Tiefeng Wang, Jinwei He, Minghan Han. Elucidating the effect of oxides on the zeolite catalyzed alkylation of benzene with 1-dodecene [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 126-135. |
[6] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[7] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[8] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[9] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
[10] | Zhenzhou Ma, Xu Hou, Bochong Chen, Liu Zhao, Enxian Yuan, Tingting Cui. Experiment and modeling of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 165-172. |
[11] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[12] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
[13] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[14] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[15] | Pascal Habimana, Yanjun Jiang, Jing Gao, Jean Bernard Ndayambaje, Osama M. Darwesh, Jean Pierre Mwizerwa, Xiaobing Zheng, Li Ma. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 66-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||