[1] P. Rakkiyappan, R. Kannan, Ethanol production of some promising commercial sugarcane varieties for ecofriendly use of ethanol as an automobile fuel, Int. J. Sci. Emerg. Technol. 5(2012) 178-180.[2] S. Prasad, A. Singh, H.C. Joshi, Ethanol as an alternative fuel from agricultural, industrial and urban residues, Resour. Conserv. Recycl. 50(2007) 1-39.[3] K. Atsonios, K.D. Panopoulos, E. Kakaras, Thermocatalytic CO2 hydrogenation for methanol and ethanol production:process improvements, Int. J. Hydrog. Energy 41(2016) 792-806.[4] S. Zhou, S. Keelnatham, L.P. Yomano, L.O. Ingram, S.W. York, Re-engineering bacteria for production, Biotechnol. Bioeng. 58(2014) 204-214.[5] J. Ding, Y.T. Liu, J. Zhang, K.F. Liu, H.C. Xiao, F.H. Kong, Y.P. Sun, J.G. Chen, The excellent performance in hydrogenation of esters over cu/ZrO2 catalyst prepared by bio-derived salicylic acid, Catal. Sci. Technol. 6(2016) 7220-7230.[6] S.R. Wang, S. Yin, W.W. Guo, Y.Y. Liu, L.Z. Zhu, X.L. Wang, Influence of inlet gas composition on dimethyl ether carbonylation and the subsequent hydrogenation of methyl acetate in two-stage ethanol synthesis, New J. Chem. 40(2016) 6460-6466.[7] S.R. Wang, W.W. Guo, H.X. Wang, L.J. Zhu, S. Yin, K.Z. Qiu, Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production, New J. Chem. 38(2014) 2792-2800.[8] J.W. Zheng, J.F. Zhou, H.Q. Lin, X.P. Duan, C.T. Williams, Y.Z. Yuan, CO-Mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol, J. Phys. Chem. C. 119(2015) 13758-13766.[9] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol:Properties, synthesis, and applications, Chem. Soc. Rev. 41(2012) 4218-4244.[10] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134(2012) 13922-13925.[11] Y.B. Song, J. Zhang, J. Lv, Y.J. Zhao, X.B. Ma, Hydrogenation of dimethyl oxalate over copper-based catalysts:Acid-base properties and reaction paths, Ind. Eng. Chem. Res. 54(2015) 9699-9707.[12] H.C. Xiao, D.B. Li, W.H. Li, Y.H. Sun, Study of induction period over K2CO3/MoS2 catalyst for higher alcohols synthesis, Fuel Process. Technol. 91(2010) 383-387.[13] L. Zhao, W.B. Li, J. Zhou, X.L. Mu, K.G. Fang, One-step synthesis of CuCo alloy/MN2O3 Al2O3 composites and their application in higher alcohol synthesis from syngas, Int. J. Hydrog. Energy 42(2017) 17414-17424.[14] C. Wen, A.Y. Yin, Y.Y. Cui, X.L. Yang, W.L. Dai, K.N. Fan, Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate, Appl. Catal. A Gen. 458(2013) 82-89.[15] S.R. Wang, X.B. Li, Q.Q. Yin, L.J. Zhu, Z.Y. Luo, Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation, Catal. Commun. 12(2011) 1246-1250.[16] S.R. Wang, Q.Q. Yin, X.B. Li, Catalytic performance and texture of TEOS based Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Res. Chin. Univ. 28(2012) 119-123.[17] S. Zhao, H.R. Yue, Y.J. Zhao, B. Wang, Y.C. Geng, J. Lv, S.P. Wang, J.L. Gong, X.B. Ma, Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2:enhanced stability with boron dopant, J. Catal. 297(2013) 142-150.[18] X.P. Kong, C.L. Ma, J. Zhang, J.Q. Sun, J.Q. Chen, K.F. Liu, Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate, Appl. Catal. A Gen. 509(2016) 153-160.[19] Y.J. Zhao, S.M. Li, Y. Wang, B. Shan, J. Zhang, S.P. Wang, X.B. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313(2017) 759-768.[20] K. Zhong, X. Wang, The influence of different precipitants on the copper-based catalysts for hydrogenation of ethylacetate to ethanol, Int. J. Hydrog. Energy 39(2014) 10951-10958.[21] L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W. Shen, Cu/SiO2 catalysts prepared by the ammonia-evaporation method:texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257(2008) 172-180.[22] X.Y. Guo, A.Y. Yin, W.L. Dai, K.N. Fan, One pot synthesis of ultra-high copper contented Cu/SBA-15 material as excellent catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Lett. 132(2009) 22-27.[23] X.P. Kong, Z. Chen, Y.H. Wu, R.H. Wang, J.G. Chen, L.F. Ding, Synthesis of Cu-Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol:enhanced catalytic behavior in the presence of a Mg2+ dopant, RSC Adv. 7(2017) 49548-49561.[24] H.H. Fan, J.J. Tan, Y.L. Zhu, H.Y. Zheng, Y.W. Li, Efficient hydrogenation of dimethyl oxalate to methyl glycolate over highly active immobilized-ruthenium catalyst, J. Mol. Catal. A-Chem. 425(2016) 68-75.[25] J. Lin, X. Zhao, Y.H. Cui, H.B. Zhang, D.W. Liao, Effect of feedstock solvent on the stability of Cu/SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Commun. 48(2012) 1177-1179.[26] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate coresheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun. 4(2013) 2339-2346.[27] H.R. Yue, X.B. Ma, J.L. Gong, An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol, Acc. Chem. Res. 47(2014) 1483-1492.[28] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol:new insights on the synergetic effect between Cu0 and Cu+, J. Phys. Chem. C 113(2009) 11003-11013.[29] E.K. Poels, D.S. Brands, Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction, Appl. Catal. A Gen. 191(2000) 83-96.[30] Y.F. Zhu, X. Kong, X.Q. Li, G.Q. Ding, Y.L. Zhu, Y.W. Li, Cu nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation, ACS Catal. 4(2014) 3612-3620.[31] S. Veibel, J.I. Nielsen, On the mechanism of the Guerbet reaction, Tetrahedron 23(1967) 1723-1733.[32] T.H. Yoon, S.B. Johnson, C.B. Musgrave, Adsorption of organic matter at mineral/water interfaces:I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces, Geochim. Cosmochim. Acta 68(2004) 4505-4518.[33] S.J. Hug, D. Bahnemann, Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR, J. Electron Spectrosc. 150(2006) 208-219.[34] J.F. Bower, E. Skucas, R.L. Patman, M.J. Krische, Catalytic C\\C coupling via transfer hydrogenation:reverse prenylation, crotylation, and allylation from the alcohol or aldehyde oxidation level, J. Am. Chem. Soc. 129(2007) 15134-15135.[35] A.M. Hilmen, M. Xu, M.J.L. Gines, E. Iglesia, Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides, Appl. Catal. A Gen. 169(1998) 355-372.[36] C. Carlini, M.D. Girolamo, M. Marchionna, M. Noviello, A.M.R. Galletti, G. Sbrana, Selective synthesis of isobutanol by means of the Guerbet reaction:part 1. Methanol/n-propanol condensation by using copper based catalytic systems, J. Mol. Catal. A Chem. 184(2002) 273-280.[37] K.M. Minachev, K.P. Kotyaev, G.I. Lin, A.Y. Rozovskii, Temperature-programmed surface reactions of methanol on commercial cu-containing catalysts, Catal. Lett. 3(1989) 299-307.[38] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, Production of hydrogen from oxidative steam reforming of methanol:Ⅱ. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts, J. Catal. 228(2004) 56-65. |