[1] F.M. Wurm, Production of recombinant protein therapeutics in cultivated mammalian cells, Nat. Biotechnol. 22(2004) 1393-1398. [2] T.R. Davis, T.J. Wickham, K.A. Mckenna, R.R. Granados, M.L. Shuler, H.A. Wood, Comparative recombinant protein production of eight insect cell lines, In Vitro Cell. Dev. Biol. Anim. 29a (1993) 388-390. [3] S. Oguchi, H. Saito, M. Tsukahara, H. Tsumura, pH condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture, Cytotechnology 52(2006) 199-207. [4] P. Gammell, N. Barron, N. Kumar, M. Clynes, Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells, J. Biotechnol. 130(2007) 213-218. [5] F. Zhang, M.A. Saarinen, L.J. Itle, S.C. Lang, D.W. Murhammer, R.J. Linhardt, The effect of dissolved oxygen (DO) concentration on the glycosylation of recombinant protein produced by the insect cell-baculovirus expression system, Biotechnol. Bioeng. 77(2002) 219-224. [6] L. Maranga, A. Cunha, J. Clemente, C.P. Mjt, Scale-up of virus-like particles production:Effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity, J. Biotechnol. 107(2004) 55-64. [7] Z. Ying, J.V. Cuenca, W. Zhou, V. Amit, NS0 cell damage by high gas velocity sparging in protein-free and cholesterol-free cultures, Biotechnol. Bioeng. 101(2008) 751-760. [8] S. Dietmair, M.P. Hodson, L.E. Quek, N.E. Timmins, P. Chrysanthopoulos, S.S. Jacob, P. Gray, L.K. Nielsen, Metabolite profiling of CHO cells with different growth characteristics, Biotechnol. Bioeng. 109(2012) 1404-1414. [9] N. Carinhas, T.M. Duarte, L.C. Barreiro, M.J.T. Carrondo, P.M. Alves, A.P. Teixeira, Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition, Biotechnol. Bioeng. 110(2013) 3244-3257. [10] H. Zhang, H. Wang, M. Liu, T. Zhang, J. Zhang, X. Wang, W. Xiang, Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody, Cytotechnology 65(2013) 363-378. [11] A.S. Rathore, QbD/PAT for bioprocessing:moving from theory to implementation, Curr. Opin. Chem. Eng. 6(2014) 1-8. [12] W.S. Ahn, J.J. Jeon, Y.R. Jeong, S.J. Lee, S.K. Yoon, Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells, Biotechnol. Bioeng. 101(2008) 1234-1244. [13] M.A. Hanson, X. Ge, Y. Kostov, K.A. Brorson, A.R. Moreira, G. Rao, Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture, Biotechnol. Bioeng. 97(2007) 833-841. [14] V. Restelli, M.D. Wang, N. Huzel, M. Ethier, H. Perreault, M. Butler, The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells, Biotechnol. Bioeng. 94(2006) 481-494. [15] J. Dean, P. Reddy, Metabolic analysis of antibody producing CHO cells in fed-batch production, Biotechnol. Bioeng. 110(2013) 1735-1747. [16] D.M. Wuest, S.W. Harcum, K.H. Lee, Genomics in mammalian cell culture bioprocessing, Biotechnol. Adv. 30(2011) 629-638. [17] A. Bedoyalópez, K. Estrada, A. Sanchezflores, O.T. Ramírez, C. Altamirano, L. Segovia, J. Mirandaríos, M.A. Trujilloroldán, N.A. Valdezcruz, Effect of temperature downshift on the transcriptomic responses of Chinese hamster ovary cells using recombinant human tissue plasminogen activator production culture, PLoS One 11(2016), e0151529.. [18] Y. Gao, S. Ray, S. Dai, A.R. Ivanov, N.R. Abu Absi, A.M. Lewis, Z. Huang, Z. Xing, M.C. Borys, Z.J. Li, Combined metabolomics and proteomics reveals hypoxia as a cause of lower productivity on scale-up to a 5000-liter CHO bioprocess, Biotechnol. J. (2016) 1190-1200. [19] F. Poon, V.S. Mathura, Introduction to proteomics, Bioinformatics:A Concept-based Introduction 2009, pp. 107-113. [20] P.K. Chrysanthopoulos, C.T. Goudar, M.I. Klapa, Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering, Metab. Eng 12(2010) 212-222. [21] S. Kang, Z. Zhang, J. Richardson, B. Shah, S. Gupta, C.J. Huang, J. Qiu, N. Le, H. Lin, P.V. Bondarenko, Metabolic markers associated with high mannose glycan levels of therapeutic recombinant monoclonal antibodies, J. Biotechnol. 203(2015) 22-31. [22] N. Sengupta, S.T. Rose, J.A. Morgan, Metabolic flux analysis of CHO cell metabolism in the late non-growth phase, Biotechnol. Bioeng. 108(2011) 82-92. [23] S.K. Yoon, S.L. Choi, J.Y. Song, G.M. Lee, Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0℃, Biotechnol. Bioeng. 89(2005) 345-356. [24] M. Bollati Fogolín, G. Forno, M. Nimtz, H.S. Conradt, M. Etcheverrigaray, R. Kratje, Temperature reduction in cultures of hGM-CSF-expressing CHO cells:Effect on productivity and product quality, Biotechnol. Prog. 21(2005) 17-21. [25] K. Furukawa, K. Ohsuye, Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme, Cytotechnology 26(1998) 153-164. [26] F. Chen, L. Fan, J. Wang, Y. Zhou, Z. Ye, L. Zhao, W. Tan, Insight into the roles of hypoxanthine and thydimine on cultivating antibody-producing CHO cells:Cell growth, antibody production and long-term stability, Appl. Microbiol. Biotechnol. 93(2012) 169-178. [27] T. Kou, L. Fan, Y. Zhou, Z. Ye, L. Zhao, W. Tan, Increasing the productivity of TNFR-Fc in GS-CHO cells at reduced culture temperatures, Biotechnol. Bioprocess Eng. 16(2011) 136-143. [28] J. Richardson, B. Shah, P.V. Bondarenko, P. Bhebe, Z. Zhang, M. Nicklaus, M.C. Kombe, Metabolomics analysis of soy hydrolysates for the identification of productivity markers of mammalian cells for manufacturing therapeutic proteins, Biotechnol. Prog. 31(2015) 522-531. [29] J.I. Sagara, K. Miura, S. Bannai, Cystine uptake and glutathione level in fetal brain cells in primary culture and in suspension, J. Neurochem. 61(1993) 1667-1671. [30] R.A. Tobey, K.D. Ley, Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture, J. Cell Biol. 46(1970) 151-157. [31] J.K. Hong, S.M. Cho, S.K. Yoon, Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells, Appl. Microbiol. Biotechnol. 88(2010) 869-876. [32] W.P. Chong, S.G. Reddy, F.N. Yusufi, D. Lee, N.S. Wong, C.K. Heng, M.G. Yap, Y.S. Ho, Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth:overexpression of malate dehydrogenase Ⅱ, J. Biotechnol. 147(2010) 116-121. [33] M. Zhou, Y. Crawford, D. Ng, J. Tung, A.F. Pynn, A. Meier, I.H. Yuk, N. Vijayasankaran, K. Leach, J. Joly, Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases, J. Biotechnol. 153(2011) 27-34. |