[1] A.J. Minchener, Fluidized bed combustion systems for power generation and other industrial applications, Proc. Inst. Mech. Eng. A J. Power Energy 217(2003) 9-18. [2] A.S. Kudjoi, Combustion of gasification residues in a pressurized fluidized-bed, Fuel Energy Abstr. 38(1997) 107. [3] H. Sasatsu, N. Misawa, M. Shimizu, R. Abe, Predicting the pressure drop across hot gas filter (CFT) installed in a commercial size PFBC system, Powder Technol. 118(2001) 58-67. [4] S. Sakuno, T. Shimizu, N. Misawa, H. Ueda, H. Sasatsu, H. Gotou, NOx emission from a 71 MWe pressurized fluidized bed combustor, Fuel 81(2002) 373-379. [5] R. Xiao, B.S. Jin, Y.Q. Xiong, Z.P. Zhong, Y.F. Duan, X.P. Chen, H.C. Zhou, M.Y. Zhang, Research and development of the pilot-scale second generation pressurized fluidized bed combustion combined cycle technology, J. Eng. Thermophys. 27(2006) 537-539. [6] T. Wang, 1-An overview of IGCC systems, Integrated Gasification Combined Cycle (IGCC) Technologies, Woodhead Publishing, Sawton, United Kingdom 2017, pp. 1-80. [7] T. Shimizu, 15-Pressurized fluidized bed combustion (PFBC) A2, in:Fabrizio Scala (Ed.), Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Woodhead Publishing, Sawton, United Kingdom 2013, pp. 669-700. [8] A. Jensen, J.E. Johnsson, Modelling of NOx emissions from pressurized fluidized bed combustion-A parameter study, Chem. Eng. Sci. 52(1997) 1715-1731. [9] J. Li, J.A.M. Kuipers, Effect of pressure on gas-solid flow behavior in dense gasfluidized beds:A discrete particle simulation study, Powder Technol. 127(2002) 173-184. [10] P. Basu, S.A. Fraser, Circulating Fluidized Bed Boilers, Springer, New York, 1991 pp. 229-253. [11] M. Trainer, E.Y. Hsie, S.A. McKeen, R. Tallamraju, D.D. Parrish, F.C. Fehsenfeld, S.C. Liu, Impact of natural hydrocarbons on hydroxyl and peroxy radicals at a remote site, J. Geophys. Res. Atmos. 92(2012) 11879-11894. [12] D.D. Parrish, M. Trainer, E.J. Williams, D.W. Fahey, G. Hübler, C.S. Eubank, S.C. Liu, P.C. Murphy, D.L. Albritton, F.C. Fehsenfeld, Measurements of the NOx-O3 photostationary state at Niwot Ridge, Colorado, J. Geophys. Res. Atmos. 91(2012) 5361-5370. [13] B. Leckner, Fluidized bed combustion:Mixing and pollutant limitation, Prog. Energy Combust. Sci. 24(1998) 31-61. [14] L. Armesto, H. Boerrigter, A. Bahillo, J. Otero, N2O emissions from fluidised bed combustion. The effect of fuel characteristics and operating conditions☆, Fuel 82(2003) 1845-1850. [15] B. Valentim, M.J. Lemos De Sousa, P. Abelha, D. Boavida, I. Gulyurtlu, Combustion studies in a fluidised bed-The link between temperature, NOx and N2O formation, char morphology and coal type, Int. J. Coal Geol. 67(2006) 191-201. [16] K. Svoboda, M. Pohořelý, Influence of operating conditions and coal properties on NOx and N2O emissions in pressurized fluidized bed combustion of subbituminous coals, Fuel 83(2004) 1095-1103. [17] Y. Lu, A. Jahkola, I. Hippinen, J. Jalovaara, The emissions and control of NOx and N2O in pressurized fluidized bed combustion, Fuel 71(1992) 693-699. [18] Y. Lu, I. Hippinen, A. Jahkola, Control of NOx and N2O in pressurized fluidized-bed combustion, Fuel 74(1995) 317-322. [19] K. Svoboda, M. Pohořelý, M. Hartman, Effects of operating conditions and dusty fuel on the NOx, N2O, and CO emissions in PFB co-combustion of coal and wood, Energy Fuel 17(2003) 1091-1099. [20] Y. Lu, Laboratory studies on devolatilization and char oxidation under PFBC conditions. 2. Fuel nitrogen conversion to nitrogen oxides, Energy Fuel 10(1996) 357-363. [21] L.A.C. Tarelho, M.A.A. Matos, F.J.M.A. Pereira, Influence of limestone addition on the behaviour of NO and N2O during fluidised bed coal combustion, Fuel 85(2006) 967-977. [22] L.F. de Diego, C.A. Londono, X.S. Wang, B.M. Gibbs, Influence of operating parameters on NOx and N2O axial profiles in a circulating fluidized bed combustor, Fuel 75(1996) 971-978. [23] J. Andries, J.G.M. Becht, P.D.J. Hoppesteyn, Pressrized fluidized bed combution and gasification of coal using flue gas recirculation and oxygen injection, Energy Convers. Manag. 38(1997) 117-122. [24] S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel 81(2002) 1051-1063. [25] F. Winter, C. Wartha, G. Löffler, H. Hofbauer, The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions, Symp. Combust. 26(1996) 3325-3334. [26] R. Abe, H. Sasatsu, T. Harada, N. Misawa, I. Saitou, Prediction of emission gas concentration from pressurized fluidized bed combustion (PFBC) of coal under dynamic operation conditions, Fuel 80(2001) 135-144. [27] T. Hulgaard, J.K. Dam, Homogeneous nitrous oxide formation and destruction under combustion conditions, AICHE J. 39(1993) 1342-1354. [28] J.C. Kramlich, J.A. Cole, J.M. McCarthy, W.S. Lanier, J.A. McSorley, Mechanisms of nitrous oxide formation in coal flames, Combust. Flame 77(1989) 375-384. [29] P. Kilpinen, M. Hupa, Homogeneous N2O chemistry at fluidized bed combustion conditions:A kinetic modeling study, Combust. Flame 85(1991) 94-104. [30] J.P. Hämäläinen, M.J. Aho, Effect of fuel composition on the conversion of volatile solid fuel-N to N2O and NO, Fuel 74(1995) 1922-1924. [31] J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 15(1989) 287-338. [32] F. Winter, in:G. Yue, H. Zhang, C. Zhao, Z. Luo (Eds.), Formation and reduction of pollutants in CFBC:From heavy metals, particulates, alkali, NOx, N2O, SOx, HCl, Springer Berlin Heidelberg, Berlin, Heidelberg 2010, pp. 43-48. [33] M.J. Aho, K.M. Paakkinen, P.M. Pirkonen, P. Kilpinen, M. Hupa, The effects of pressure, oxygen partial pressure, and temperature on the formation of N2O, NO, and NO2 from pulverized coal, Combust. Flame 102(1995) 387-400. [34] P. Kilpinen, S. Kallio, J. Konttinen, V. Barišić, Char-nitrogen oxidation under fluidised bed combustion conditions:Single particle studies, Fuel 81(2002) 2349-2362. [35] T. Joutsenoja, J. Saastamoinen, M. Aho, R. Hernberg, Effects of pressure and oxygen concentration on the combustion of different coals, Energy Fuel 13(1999) 130-145. [36] J. Tomeczek, S. Gil, Volatiles release and porosity evolution during high pressure coal pyrolysis, Fuel 82(2003) 285-292. [37] G.G. De Soete, Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion, Symp. Combust. 23(1991) 1257-1264. [38] X. Jiang, X. Huang, J. Liu, X. Han, NOx emission of fine-and superfine-pulverized coal combustion in O2/CO2 atmosphere, Energy Fuel 24(2010) 6307-6313. [39] S. Lin, Y. Suzuki, H. Hatano, Effect of pressure on NOx emission from char particle combustion, Energy Fuel 16(2002) 634-639. [40] A. Reidick, H. Kremer, Pollutant formation during coal combustion in a CFB test furnace, Symp. Combust. 26(1996) 3309-3315. [41] S. Ergun, A.A. Orning, Fluid flow through randomly packed columns and fluidized beds, Ind. Eng. Chem. 41(1949) 1179-1184. [42] C.Y. Wen, Y.H. Yu, A generalized method for predicting the minimum fluidization velocity, AICHE J. 12(1966) 610-612. [43] H. Zhou, Y. Huang, G. Mo, Z. Liao, K. Cen, Experimental investigations of the conversion of fuel-N, volatile-N and char-N to NOx and N2O during single coal particle fluidized bed combustion, J. Energy Inst. 90(2017) 62-72. [44] G. Löffler, D. Andahazy, C. Wartha, F. Winter, H. Hofbauer, NOx and N2O formation mechanisms-A detailed chemical kinetic modeling study on a single fuel particle in a laboratory-scale fluidized bed, J. Energy Resour. Technol. 123(2001) 228-235. |