[1] S. Parres-Esclapez, I. Such-Basanez, M.J. Illan-Gomez, C. Salinas-Martinez de Lecea, A. Bueno-Lopez, Study by isotopic gases and in situ spectroscopies (DRIFTS, XPS and Raman) of the N2O decomposition mechanism on Rh/CeO2 and Rh/γ-Al2O3 catalysts, J. Catal. 276(2010) 390-401.[2] Y. Lin, T. Meng, Z. Ma, Catalytic decomposition of N2O over RhOx supported on metal phosphates, J. Ind. Eng. Chem. 28(2015) 138-146.[3] M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya, S. Kagawa, Copper(Ⅱ) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide, J. Chem. Soc. Chem. Commun. (1986) 1272-1273.[4] P.J. Smeets, M.H. Groothaert, R.M. van Teeffelen, H. Leeman, E.J.M. Hensen, R.A. Schoonheydt, Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites:Elucidating the influence of the Cu-Cu distance on oxygen migration, J. Catal. 245(2007) 358-368.[5] B.M. Abu-Zied, W. Schwieger, A. Unger, Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method, Appl. Catal. B 84(2008) 277-288.[6] J.K. Lee, Y.J. Kim, H.J. Lee, S.H. Kim, S.J. Cho, I.S. Nam, S.B. Hong, Iron-substituted TNU-9, TNU-10, and IM-5 zeolites and their steam-activated analogs as catalysts for direct N2O decomposition, J. Catal. 284(2011) 23-33.[7] X.Y. Zhang, Q. Shen, C. He, Y.F. Wang, J. Cheng, Z.P. Hao, CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide, J. Hazard. Mater. 192(2011) 1756-1765.[8] X.Y. Zhang, Q. Shen, C. He, C.Y. Ma, J. Cheng, Z.M. Liu, Z.P. Hao, Decomposition of nitrous oxide over co-zeolite catalysts:role of zeolite structure and active site, Catal. Sci. Technol. 2(2012) 1249-1258.[9] N. Liu, R.D. Zhang, B.H. Chen, Y.P. Li, Y.X. Li, Comparative study on the direct decomposition of nitrous oxide over M (Fe, Co, Cu)-BEA zeolites, J. Catal. 294(2012) 99-112.[10] Q. Xiao, F.F. Yang, J. Zhuang, G.P. Qiu, Y.J. Zhong, W.D. Zhu, Facile synthesis of uniform FeZSM-5 crystals with controlled size and their application to N2O decomposition, Microporous Mesoporous Mater. 167(2013) 38-43.[11] P.F. Xie, Z. Ma, H.B. Zhou, C.Y. Huang, Y.H. Yue, W. Shen, H.L. Xu, W.M. Hua, Z. Gao, Catalytic decomposition of N2O over Cu-ZSM-11 catalysts, Microporous Mesoporous Mater. 191(2014) 112-117.[12] Y. Li, J.N. Armor, Catalytic decomposition of nitrous oxide on metal exchanged zeolites, Appl. Catal. B 1(1992) L21-L29.[13] J. Wang, N. Mizuno, M. Misono, Comparison of catalytic decomposition of dinitrogen oxide and nitrogen monoxide over Cu/ZSM-5 and Cu/Y zeolites, Bull. Chem. Soc. Jpn. 71(1998) 947-954.[14] T. Meng, N. Ren, Z. Ma, Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition, J. Mol. Catal. A 404-405(2015) 233-239.[15] T. Meng, Y. Lin, Z. Ma, Effect of the crystal size of Cu-ZSM-5 on the catalytic performance in N2O decomposition, Mater. Chem. Phys. 163(2015) 293-300.[16] W. Zou, P.F. Xie, W.M. Hua, Y.D. Wang, D.J. Kong, Y.H. Yue, Z. Ma, W.M. Yang, Z. Gao, Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets, J. Mol. Catal. A 394(2014) 83-88.[17] S.S. Sun, D.S. Mao, J. Yu, Z.Q. Yang, G.Z. Lu, Z. Ma, Low-temperature CO oxidation on CuO/CeO2 catalysts:The significant effect of copper precursor and calcination temperature, Catal. Sci. Technol. 5(2015) 3166-3181.[18] R. Bulanek, B. Wichterlova, Z. Sobalik, J. Tichy, Reducibility and oxidation activity of Cu ions in zeolites:Effect of Cu ion coordination and zeolite framework composition, Appl. Catal. B 31(2001) 13-25.[19] S.A. Yashnik, Z.R. Ismagilov, V.F. Anufrienko, Catalytic properties and electronic structure of copper ions in Cu-ZSM-5, Catal. Today 110(2005) 310-322.[20] S. Yashnik, Z. Ismagilov, Cu-substituted ZSM-5 catalyst:Controlling of DeNOx reactivity via ion-exchange mode with copper-ammonia solution, Appl. Catal. B 170-171(2015) 241-254.[21] M.H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt, Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites, J. Am. Chem. Soc. 127(2005) 1394-1395.[22] Z.R. Ismagilov, R.A. Shkrabina, L.T. Tsikoza, S.A. Yashnik, V.A. Sazonov, V.V. Kuznetsov, M.V. Luzgin, A.V. Kalinkin, H. Veringa, The stability of monolith CuZSM-5 catalysts for the selective reduction of nitrogen oxides with hydrocarbons:I. Synthesis and characterization of bulk CuZSM-5 catalysts, Kinet. Catal. 42(2001) 847-853.[23] H.B. Zhou, Z. Huang, C. Sun, F. Qin, D.S. Xiong, W. Shen, H.L. Xu, Catalytic decomposition of N2O over CuxCe1-xOy mixed oxides, Appl. Catal. B 125(2012) 492-498.[24] K.I. Hadjiivanov, M.M. Kantcheva, D.G. Klissurski, IR study of CO adsorption on CuZSM-5 and CuO/SiO2 catalysts:σ and π components of the Cu+-CO bond, J. Chem. Soc. Faraday Trans. 92(1996) 4595-4600.[25] T.T.H. Dang, H.L. Zubowa, U. Bentrup, M. Richter, A. Martin, Microwave-assisted synthesis and characterization of Cu-containing AlPO4-5 and SAPO-5, Microporous Mesoporous Mater. 123(2009) 209-220.[26] L. Wang, W. Li, G.S. Qi, D. Weng, Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3, J. Catal. 289(2012) 21-29.[27] J.Y. Yan, G.D. Lei, W.M.H. Sachtler, H.H. Kung, Deactivation of Cu/ZSM-5 catalysts for lean NO x reduction:Characterization of changes of Cu state and zeolite support, J. Catal. 161(1996) 43-54.[28] Y. Kuroda, Y. Yoshikawa, R. Kumashiro, M. Nagao, Analysis of active sites on copper ion-exchanged ZSM-5 for CO adsorption through IR and adsorption-heat measurements, J. Phys. Chem. B 101(1997) 6497-6503.[29] C.F. Baes Jr., R.F. Mesmer, The hydrolysis of cations, Wiley/Interscience, New York, 1976.[30] L.T. Tsikoza, E.V. Matus, Z.R. Ismagilov, V.A. Sazonov, V.V. Kuznetsov, Correlation between the Cu/Al value and activity of Cu-ZSM-5 catalysts and the chemical nature of the starting copper salt, Kinet. Catal. 46(2005) 613-617.[31] Z. Ma, Y. Ren, Y.B. Lu, P.G. Bruce, Catalytic decomposition of N2O on ordered crystalline metal oxides, J. Nanosci. Nanotechnol. 13(2013) 5093-5103.[32] M.V. Konduru, S.S.C. Chuang, Dynamics of NO and N2O decomposition over Cu-ZSM-5 under transient reducing and oxidizing conditions, J. Catal. 196(2000) 271-286.[33] P.E. Fanning, M.A. Vannice, A DRIFTS study of Cu-ZSM-5 prior to and during its use for N2O decomposition, J. Catal. 207(2002) 166-182.[34] X. Liu, Z.Y. Yang, Y.P. Li, F.Z. Zhang, Theoretical study of N2O decomposition mechanism over binuclear Cu-ZSM-5 zeolites, J. Mol. Catal. A 396(2015) 181-187.[35] L. Chen, H.Y. Chen, J. Lin, K.L. Tan, FTIR, XPS and TPR studies of N2O decomposition over Cu-ZSM-5, Surf. Interface Anal. 28(1999) 115-118.[36] E.S. Shpiro, W. Grunert, R.W. Joyner, G.N. Baeva, Nature, distribution and reactivity of copper species in over-exchanged Cu-ZSM-5 catalysts:An XPS/XAES study, Catal. Lett. 24(1994) 159-169.[37] F. Kapteijn, G. Marban, J. Rodriguez-Mirasol, J.A. Moulijn, Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts, J. Catal. 167(1997) 256-265.[38] G. Mul, J. Perez-Ramirez, F. Kapteijn, J.A. Moulijn, NO-assisted N2O decomposition over ex-framework FeZSM-5:mechanistic aspects, Catal. Lett. 77(2001) 7-13.[39] E.V. Kondratenko, J. Perez-Ramirez, Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products, J. Phys. Chem. B 110(2006) 22586-22595.[40] C.M. Fu, V.N. Korchak, W.K. Hall, Decomposition of nitrous oxide on FeY zeolite, J. Catal. 68(1981) 166-171.[41] P.J. Smeets, B.F. Sels, R.M. van Teeffelen, H. Leeman, E.J.M. Hensen, R.A. Schoonheydt, The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen, J. Catal. 256(2008) 183-191.[42] M. Kogel, V.H. Sandoval, W. Schwieger, A. Tissler, T. Turek, Catalytic activity and hydrothermal stability of Cu-ZSM-5 used for the decomposition of N2O, Chem. Eng. Technol. 21(1998) 655-658.[43] B.I. Palella, M. Cadoni, A. Frache, H.O. Pastore, R. Pirone, G. Russo, S. Coluccia, L. Marchese, On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition:A comparison with CuZSM-5, J. Catal. 217(2003) 100-106.[44] A. Frache, B.I. Palella, M. Cadoni, R. Pirone, H.O. Pastore, L. Marchese, CuAPSO-34 catalysts for N2O decomposition in the presence of H2O. A study of zeolitic structure stability in comparison to Cu-SAPO-34 and Cu-ZSM-5, Top. Catal. 22(2003) 53-57.[45] B.I. Palella, R. Pirone, G. Russo, A. Albuquerque, H.O. Pastore, M. Cadoni, A. Frache, L. Marchese, On the activity and hydrothermal stability of CuMCM-22 in the decomposition of nitrogen oxides:A comparison with CuZSM-5, Catal. Commun. 5(2004) 191-194. |