Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1586-1594.DOI: 10.1016/j.cjche.2018.12.022
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Shichang Chen, Lihao Zhang, Yongjun Wang, Xianming Zhang, Wenxing Chen
Received:
2018-09-02
Online:
2019-10-14
Published:
2019-07-28
Contact:
Wenxing Chen
Shichang Chen, Lihao Zhang, Yongjun Wang, Xianming Zhang, Wenxing Chen
通讯作者:
Wenxing Chen
Shichang Chen, Lihao Zhang, Yongjun Wang, Xianming Zhang, Wenxing Chen. Residence time distribution of high viscosity fluids falling film flow down outside of industrial-scale vertical wavy wall: Experimental investigation and CFD prediction[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1586-1594.
Shichang Chen, Lihao Zhang, Yongjun Wang, Xianming Zhang, Wenxing Chen. Residence time distribution of high viscosity fluids falling film flow down outside of industrial-scale vertical wavy wall: Experimental investigation and CFD prediction[J]. 中国化学工程学报, 2019, 27(7): 1586-1594.
[1] T. Liu, Y. Zhang, Y. Xu, H. Lin, X. Xu, Y. Luo, et al., The effects of dust-haze on mortality are modified by seasons and individual characteristics in Guangzhou, China, Environ. Pollut. 187(2014) 116-123. [2] Q. Zhang, J. Quan, X. Tie, X. Li, Q. Liu, Y. Gao, D. Zhao, Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China, Sci. Total Environ. 502(2015) 578-584. [3] M. Gao, S.K. Guttikunda, G.R. Carmichael, Y. Wang, Z. Liu, C. Stanier, et al., Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area, Sci. Total Environ. 511(2015) 553-561. [4] J. Gao, A. Woodward, S. Vardoulakis, et al., Haze, public health and mitigation measures in China:A review of the current evidence for further policy response, Sci. Total Environ. 578(2017) 148-157. [5] G. Huang, PM2.5 opened a door to public participation addressing environmental challenges in China, Environ. Pollut. 197(2015) 313-315. [6] China's Ministry of Environmental Protection, 2017 China Ecological Environment Situation Report http://www.mep.gov.cn/hjzl/, 2018. [7] China's Ministry of Environmental Protection, National Ambient Air Quality Standards (GB3095-2012) http://www.mep.gov.cn, 2013. [8] China's State Council, Action plan on prevention and control of air pollution http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm, 2013. [9] China's Ministry of Environmental Protection, Clean air research plan http://www.mep.gov.cn/xxgk/hjyw/201309/t20130930_261118.shtml, 2013. [10] National Bureau of Statistics of China, 2015 China Statistical Yearbook, China Statistics Press, Beijing (China), 2016(in Chinese). [11] M. Li, L. Zhang, Haze in China:Current and future challenges, Environ. Pollut. 189(2014) 85-86. [12] China's Ministry of Environmental Protection, Nankai University, Chinese Research Academy of Environmental Sciences, et al., Guidance for Particulate Matter Source Apportionment, 2013(in Chinese). [13] M. Zheng, Y. Zhang, C. Yan, X. Zhu, J.J. Schauer, Y. Zhang, Review of PM2.5 source apportionment methods in China, Acta Sci. Nat. Univ. Pekin. 50(2014) 1141-1154(in Chinese). [14] C.Y. Zhang, S.X. Wang, Y. Zhao, et al., Current status and future prospects of anthropogenic particulate matter emissions in China, J. Environ. Sci. 30(2009) 1881-1887(in Chinese). [15] G.L. Cao, X.Y. Zhang, S.L. Gong, et al., Emission inventories of primary particles and pollutant gases for China, Chin. Sci. Bull. 56(2011) 261-268(in Chinese). [16] Y. Zhang, J. Cai, S. Wang, K. He, M. Zheng, Review of receptor-based source apportionment research of fine particulate matter and its challenges in China, Sci. Total Environ. 586(2017) 917-929. [17] Y. Zhang, M. Zheng, J. Cai, C. Yan, Y. Hu, A.G. Russell, et al., Comparison and overview of PM2.5 source apportionment methods, Chin. Sci. Bull. 60(2015) 109-121(in Chinese). [18] C.S. Liang, F.K. Duan, K.B. He, Y.L. Ma, Review on recent progress in observations, source identifications and countermeasures of PM2.5, Environ. Int. 86(2016) 150-170. [19] S. Balachandran, J.E. Pachon, Y.T. Hu, D. Lee, J.A. Mulholland, A.G. Russell, Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis, Atmos. Environ. 61(2012) 387-394. [20] S. Balachandran, H.H. Chang, J.E. Pachon, H.A. Holmes, J.A. Mulholland, A.G. Russell, Bayesian-based ensemble source apportionment of PM2.5, Environ. Sci. Technol. 47(2013) 13511-13518. [21] M.C. Bove, P. Brotto, F. Cassola, E. Cuccia, D. Massabo, A. Mazzino, et al., An integrated PM2.5 source apportionment study:Positive matrix factorisation vs. the chemical transport model CAMx, Atmos. Environ. 94(2014) 274-286. [22] Y. Hu, S. Balachandran, J.E. Pachon, J. Baek, C. Ivey, H. Holmes, et al., Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach, Atmos. Chem. Phys. 14(2014) 5415-5431. [23] M.L. Maier, S. Balachandran, S.E. Sarnat, J.R. Turner, J.A. Mulholland, A.G. Russell, Application of an ensemble-trained source apportionment approach at a site impacted by multiple point sources, Environ. Sci. Technol. 47(2013) 3743-3751. [24] S. Han, J. Wu, Y. Zhang, Z. Cai, et al., Characteristics and formation mechanism of a winter haze-fog episode in Tianjin, China, Atmos. Environ. 98(2014) 323-330. [25] X. Zhang, M. Mao, Brown haze types due to aerosol pollution at Hefei in the summer and fall, Chemosphere 119(2015) 1153-1162. [26] J. Li, H. Du, Z. Wang, Y. Sun, W. Yang, et al., Rapid formation of a severe regional winter haze episode over a megacity cluster on the North China Plain, Environ. Pollut. 223(2017) 605-615. [27] Y. Zhu, L. Huang, J. Li, Q. Ying, H. Zhang, et al., Sources of particulate matter in China:Insights from source apportionment studies published in 1987-2017, Environ. Int. 115(2018) 343-357. [28] Y. Yang, X. Liu, Y. Qu, J. Wang, J. An, Y. Zhang, F. Zhang, Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013, Atmos. Res. 5(2015) 192-203. [29] X. Tie, Q. Zhang, H. He, J. Cao, S. Han, Y. Gao, et al., A budget analysis of the formation of haze in Beijing, Atmos. Environ. 100(2015) 25-36. [30] R. Zhang, X. Sun, A. Shi, Y. Huang, J. Yan, et al., Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China, Atmos. Environ. 177(2018) 275-282. [31] R. Huang, Y. Zhang, C. Bozzetti, K. Ho, J. Cao, Y. Han, et al., High secondary aerosol contribution to particulate pollution during haze events in China, Nature 514(2014) 218-222. [32] S. Guo, M. Hu, M.L. Zamora, J. Peng, et al., Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci. U. S. A. 111(2014) 17373-17378. [33] W. Huang, X. Li, S. Yang, Y. Qian, Dynamic flexibility analysis of chemical reaction systems with time delay:Using a modified finite element collocation method, Chem. Eng. Res. Des. 89(2011) 1938-1946. [34] W. Huang, Y. Qian, Y. Shao, Y. Qiu, H. Fan, Delay sensitivity analysis for typical reactor systems with flexibility consideration, Ind. Eng. Chem. Res. 53(2014) 14721-14734. [35] W. Huang, H. Fan, Y. Qiu, F. Cheng, Assessment and computation of the delay tolerability for batch reactors under uncertainty, Chem. Eng. Res. Des. 124(2017) 74-84. [36] Z. Huang, Y. Lin, X. Wang, C. Ye, L. Li, Optimization and control of a reactive distillation process for the synthesis of dimethyl carbonate, Chin. J. Chem. Eng. 25(2017) 1079-1090. [37] Y. Sun, Q. Jiang, Y. Xu, Y. Ma, et al., Aerosol characterization over the North China Plain:Haze life cycle and biomass burning impacts in summer, J. Geophys. Res. Atmos. 121(2016) 2508-2521. [38] W. Huang, H. Fan, Y. Qiu, Z. Cheng, Y. Qian, Application of fault tree approach for the causation mechanism of urban haze in Beijing-Considering the risk events related with exhausts of coal combustion, Sci. Total Environ. 544(2016) 1128-1135. [39] W. Huang, P. Xu, Y. Qian, Causation mechanism analysis of urban haze based on FTA method:Taking Tianjin as a case study, CIESC J. 69(2018) 982-991. [40] W. Huang, H. Fan, Y. Qiu, Z. Cheng, P. Xu, Y. Qian, Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach, Chemosphere 151((2016) 9-16. [41] T. Bedford, R. Cooke, Probabilistic Risk Analysis:Foundations and Methods, Cambridge University Press, Cambridge, 2001. [42] R.F. Abdul, A. Varuttamaseni, M. Kintner-Meyer, J.C. Lee, Application of fault tree analysis for customer reliability assessment of a distribution power system, Reliab. Eng. Syst. Saf. 111(2013) 76-85. [43] S. Cheng, Z. Li, H. Mang, K. Neupane, M. Wauthelet, E.M. Huba, Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal, Appl. Energy 113(2014) 1372-1381. [44] A. Lindhe, T. Norberg, L. Rosén, Approximate dynamic fault tree calculations for modelling water supply risks, Reliab. Eng. Syst. Saf. 106(2012) 61-71. [45] L. Placca, R. Kouta, Fault tree analysis for PEM fuel cell degradation process modelling, Int. J. Hydrogen Energy 36(2011) 393-405. [46] A. Volkanovski, M. Cepin, B. Mavko, Application of the fault tree analysis for assessment of power system reliability, Reliab. Eng. Syst. Saf. 94(2009) 1116-1127. [47] P. Zhang, J. Wu, Impact of mandatory targets on PM2.5 concentration control in Chinese cities, J. Clean. Prod. 197(2018) 323-331. [48] H. Fu, J. Chen, Formation, features and controlling strategies of severe haze-fog pollutions in China, Sci. Total Environ. 578(2017) 121-138. [49] G. Liu, Z. Yang, B. Chen, Y. Zhang, M. Su, S. Ulgiati, Prevention and control policy analysis for energy-related regional pollution management in China, Appl. Energy 166(2016) 292-300. [50] H. Zhang, S. Wang, J. Hao, X. Wang, S. Wang, et al., Air pollution and control action in Beijing, J. Clean. Prod. 112(2016) 1519-1527. [51] J. Tao, L. Zhang, Z. Zhang, R. Huang, Y. Wu, R. Zhang, J. Cao, Y. Zhang, Control of PM2.5 in Guangzhou during the 16th Asian Games period:Implication for hazy weather prevention, Sci. Total Environ. 508(2015) 57-66. [52] Q.C. Yang, C.W. Zhang, D.W. Zhang, H.R. Zhou, Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission, Ind. Eng. Chem. Res. 57(2018) 7600-7612. [53] Q.C. Yang, D.W. Zhang, H.R. Zhou, C.W. Zhang, Process simulation, analysis and optimization of a coal to ethylene glycol process, Energy 155(2018) 521-534. [54] G. Guan, Clean coal technologies in Japan:A review, Chin. J. Chem. Eng. 25(2017) 689-697. [55] Z. Zhang, W. Wang, M. Cheng, S. Liu, J. Xu, et al., The contribution of residential coal combustion to PM2.5 pollution over China's Beijing-Tianjin-Hebei region in winter, Atmos. Environ. 159(2017) 147-161. [56] D. Wu, X. M, S. Zhang, Integrating synergistic effects of air pollution control technologies:More cost-effective approach in the coal-fired sector in China, J. Clean. Prod. 199(2018) 1035-1042. [57] D. Sun, J. Fang, J. Sun, Health-related benefits of air quality improvement from coal control in China:Evidence from the Jing-Jin-Ji region, Resour. Conserv. Recycl. 129(2018) 416-423. [58] Y. Zhang, C. Liu, K. Li, Y. Zhou, Strategy on China's regional coal consumption control:A case study of Shandong province, Energy Policy 112(2018) 316-327. [59] X. Yang, F. Teng, The air quality co-benefit of coal control strategy in China, Resour. Conserv. Recycl. 129(2018) 373-382. |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[3] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[4] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[5] | Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 323-340. |
[6] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[7] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[8] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[9] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
[10] | Pan Zhang, Guanghui Chen, Weiwen Wang, Guodong Zhang, Huaming Wang. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 1-10. |
[11] | Ye Zhang, Yong Gao, Peng Wang, Duo Na, Zhenming Yang, Jinsong Zhang. Solvent extraction with a three-dimensional reticulated hollow-strut SiC foam microchannel reactor [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 53-62. |
[12] | Mehdi Miansari, Mehdi Rajabtabar Darvishi, Davood Toghraie, Pouya Barnoon, Mojtaba Shirzad, As'ad Alizadeh. Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 424-434. |
[13] | Shuai Chen, Jiahong Lan, Yu Zhang, Jia Guo, Zhikai Cao, Yong Sha. 3D multiphase flow simulation of Marangoni convection on reactive absorption of CO2 by monoethanolamine in microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 370-377. |
[14] | Jian Chen, Lingbing Bu, Yingqi Luo. Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 112-119. |
[15] | Jing Zhang, Zhongyi Ge, Wei Wang, Bin Gong, Yaxia Li, Jianhua Wu. The concave-wall jet characteristics in vertical cylinder separator with inlet baffle component [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 178-189. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 431
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||