Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1595-1607.DOI: 10.1016/j.cjche.2018.11.002
• Separation Science and Engineering • Previous Articles Next Articles
Asmaa Selim1,2, Andras Jozsef Toth1, Daniel Fozer1, Eniko Haaz1, Nóra Valentínyi1, Tibor Nagy1, Orsolya Keri3, Lászlo Péter Bakos3, Imre Miklós Szilágyi3, Peter Mizsey1,4
Received:
2018-07-12
Online:
2019-10-14
Published:
2019-07-28
Contact:
Daniel Fozer, Eniko Haaz, Tibor Nagy, Peter Mizsey
Supported by:
Asmaa Selim1,2, Andras Jozsef Toth1, Daniel Fozer1, Eniko Haaz1, Nóra Valentínyi1, Tibor Nagy1, Orsolya Keri3, Lászlo Péter Bakos3, Imre Miklós Szilágyi3, Peter Mizsey1,4
通讯作者:
Daniel Fozer, Eniko Haaz, Tibor Nagy, Peter Mizsey
基金资助:
Asmaa Selim, Andras Jozsef Toth, Daniel Fozer, Eniko Haaz, Nóra Valentínyi, Tibor Nagy, Orsolya Keri, Lászlo Péter Bakos, Imre Miklós Szilágyi, Peter Mizsey. Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1595-1607.
Asmaa Selim, Andras Jozsef Toth, Daniel Fozer, Eniko Haaz, Nóra Valentínyi, Tibor Nagy, Orsolya Keri, Lászlo Péter Bakos, Imre Miklós Szilágyi, Peter Mizsey. Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation[J]. 中国化学工程学报, 2019, 27(7): 1595-1607.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.11.002
[1] J.E. Cadotte, Reverse osmosis membrane. US patent 4039440(1977). [2] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination:Water sources, technology, and today's challenges, Water Res. 43(2009) 2317-2348. [3] T.S. Chung, S. Zhang, K.Y. Wang, J.C. Su, M.M. Ling, Forward osmosis processes:Yesterday, today and tomorrow, Desalination 287(2012) 78-81. [4] D. Li, H. Wang, Recent developments in reverse osmosis desalination membranes, J. Mater. Chem. 20(2010) 4551-4566. [5] M.T.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4(2011) 1946-1971. [6] B. Van der Bruggen, C. Vandecasteele, T.V. Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environ. Prog. Sustain. Energy 22(2003) 46-56. [7] M. Elimelech, W.A. Phillip, The future of seawater desalination:Energy, technology and the environment, Science 333(2011) 712-717. [8] Y.N. Kwon, S. Hong, H. Choi, T. Tak, Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement, J. Membr. Sci. 415-416(2012) 192-198. [9] S. Xiong, J. Zuo, Y.G. Ma, L. Liu, H. Wu, Y. Wang, Novel thin film composite forward osmosis membrane of enhanced water flux and anti-fouling property with N-[3-(trimethoxysilyl) propyl] ethylenediamine incorporated, J. Membr. Sci. 520(2016) 400-414. [10] K.Y. Jee, D.H. Shin, Y.T. Lee, Surface modification of polyamide RO membrane for improved fouling resistance, Desalination 394(2016) 131-137. [11] D. Saeki, T. Tanimoto, H. Matsuyama, Anti-biofouling of polyamide reverse osmosis membranes using phosphorylcholine polymer grafted by surfaceinitiated atom transfer radical polymerization, Desalination 350(2014) 21-27. [12] C.K. Kim, J.H. Kim, I.J. Roh, J.J. Kim, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. Membr. Sci. 165(2000) 189-199. [13] Y. Song, P. Sun, L.L. Henry, B. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, J. Membr. Sci. 251(2005) 67-79. [14] Y.H. La, R. Sooriyakumaran, D.C. Miller, M. Fujiwara, Y. Terui, K. Yamanaka, B. D. McCloskey, B.D. Freeman, R.D. Allen, Novel thin film composite membrane containing ionizable hydrophobes:pH-dependent reverse osmosis behavior and improved chlorine resistance, J. Mater. Chem. 20(2010) 4615-4620. [15] X. Li, T.S. Chung, Effects of free volume in thin-film composite membranes on osmotic power generation, AIChE J. 59(2013) 4749-4761. [16] S. Zhang, F.J. Fu, T.S. Chung, Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power, Chem. Eng. Sci. 87(2013) 40-50. [17] P. Gorgojo, M.F. Jimenez-Solomon, A.G. Livingston, Polyamide thin film composite membranes on cross-linked polyimide supports:Improvement of RO performance via activating solvent, Desalination 344(2014) 181-188. [18] I. Kocsis, Z. Sun, Y.M. Legrand, M. Barboiu, Artificial water channels-Deconvolution of natural aquaporins through synthetic design, npj Clean Water 1(2018) 13. [19] S. Qi, R. Wang, G.K.M. Chaitra, J. Torres, X. Hu, A.G. Fane, Aquaporin-based biomimetic reverse osmosis membranes:Stability and long term performance, J. Membr. Sci. 508(2016) 94-103. [20] B.H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Membr. Sci. 294(2007) 1-7. [21] M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M.V. Hoek, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes, Langmuir 25(2009) 10139-10145. [22] M. Safarpour, V. Vatanpour, A. Khataee, H. Zarrabi, P. Gholami, M.E. Yekavalangi, High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite, Desalination 411(2017) 89-100. [23] H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, W.S.W. Ho, High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci. 476(2015) 373-383. [24] H. Huang, X. Qu, H. Dong, L. Zhang, H. Chen, Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane, RSC Adv. 3(2013) 8203-8207. [25] J. Farahbakhsh, M. Delnavaz, V. Vatanpour, Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties, Desalination 410(2017) 1-9. [26] E.K. Sinner, W. Knoll, Functional tethered membranes, Curr. Opin. Chem. Biol. 5(2001) 705-711. [27] E. Kalb, S. Frey, L.K. Tamm, Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers, Biochim. Biophys. Acta 1103(1992) 307-316. [28] G. Sun, H. Zhou, Y. Li, K. Jeyaseelan, A. Armugam, T.S. Chung, A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers, Colloids Surf. B:Biointerfaces 89(2012) 283-288. [29] A. Fuwad, H. Ryu, N. Malmstadt, S.M. Kim, T.-J. Jeon, Biomimetic membranes as potential tools for water purification:Preceding and future avenues, Desalination 458(2019) 97-115. [30] J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci. 476(2015) 303-310. [31] C. Wang, X. Liu, N.K. Demir, J.P. Chen, K. Li, Applications of water stable metalorganic frameworks, Chem. Soc. Rev. 45(2016) 5107-5134. [32] D.C. Ma, S.B. Peh, G. Han, S.B. Chen, Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66:Toward enhancement of water flux and salt rejection, ACS Appl. Mater. Interfaces 9(2017) 7523-7534. [33] Y. He, Y.P. Tang, D.C. Ma, T.S. Chung, UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal, J. Membr. Sci. 541(2017) 262-270. [34] G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci. 328(2009) 257-267. [35] H.S. Lee, S.J. Im, J.H. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination 219(2008) 48-56. [36] S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane:Characterization, nanofiltration, antifouling properties, Polym. Adv. Technol. 18(2007) 562-568. [37] M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination, Desalination 386(2016) 67-76. [38] M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance, J. Membr. Sci. 489(2015) 43-54. [39] R.F. Service, To net big molecules, widen the mesh, Science 296(2002) 449-451. [40] D.X. Trinh, T.P.N. Tran, T. Taniike, Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration, Sep. Purif. Technol. 177(2017) 249-256. [41] Y. Li, S. Li, K. Zhang, Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes, J. Membr. Sci. 537(2017) 42-53. [42] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44(2015) 362-381. [43] S. Xu, F. Li, B. Su, A.Z. Hu, X. Gao, C. Gao, Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination, Desalination 451(2019) 219-230. [44] D.L. Zhao, S. Das, T.S. Chung, Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process, Environ. Sci. Technol. 51(2017) 14016-14023. [45] X. Song, Q. Zhou, T. Zhang, H. Xu, Z. Wang, Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes:Antifouling and chlorine resistance potentials, J. Mater. Chem. A 4(2016) 16896-16905. [46] W.X. Gai, D.L. Zhao, T.S. Chung, Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation, J. Membr. Sci. 551(2018) 94-102. [47] X.H. Ma, Z.K. Yao, Z. Yang, H. Guo, Z.L. Xu, C.Y. Tang, M. Elimelech, Nanofoaming of polyamide desalination membranes to tune permeability and selectivity, Environ. Sci. Technol. Lett. 5(2018) 123-130. [48] T.S. Chung, L. Luo, C.F. Wan, Y. Cui, G. Amy, What is next for forward osmosis (FO) and pressure retarded osmosis (PRO), Sep. Purif. Technol. 156(2015) 856-860. [49] S. Lee, J. Choi, Y.-G. Park, H. Shon, C.G. Ahn, S.-H. Kim, Hybrid desalination processes for beneficial use of reverse osmosis brine:Current status and future prospects, Desalination 454(2019) 104-111. [50] T. Y. Cath, A. E. Childress, Systems and methods for purification of liquids, US Patent 7914680 B2. (2011). [51] N.T. Hancock, P. Xu, M.J. Roby, J.D. Gomez, T.Y. Cath, Towards direct potable reuse with forward osmosis:Technical assessment of long-term process performance at the pilot scale, J. Membr. Sci. 445(2013) 34-46. [52] T.S. Chung, X. Li, R.C. Ong, Q. Ge, H. Wong, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opin. Chem. Eng. 1(2012) 246-257. [53] Y. Liu, B. Mi, Combined fouling of forward osmosis membranes:Synergistic foulant interaction and direct observation of fouling layer formation, J. Membr. Sci. 407-408(2012) 136-144. [54] N.N. Bui, J.R. McCutcheon, Nanofiber supported thin-film composite membrane for pressure-retarded osmosis, Environ. Sci. Technol. 48(2014) 4129-4136. [55] Y. Chun, F. Zaviska, E. Cornelissen, L. Zou, A case study of fouling development and flux reversibility of treating actual lake water by forward osmosis process, Desalination 357(2015) 55-64. [56] F. Volpin, E. Fons, L. Chekli, J.E. Kim, A. Jang, H.K. Shon, Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination:Understanding the optimal feed solution to minimise fouling, Process. Saf. Environ. Prot. 117(2018) 523-532. [57] A.H. Hawari, A. Al-Qahoumi, A. Ltaief, S. Zaidi, A. Altaee, Dilution of seawater using dewatered construction water in a hybrid forward osmosis system, J. Clean. Prod. 195(2018) 365-373. [58] C.F. Wan, T.S. Chung, Techno-economic evaluation of various RO+PRO and RO + FO integrated processes, Appl. Energy 212(2018) 1038-1050. [59] R. Valladares Linares, Z. Li, V. Yangali-Quintanilla, N. Ghaffour, G. Amy, T. Leiknes, J.S. Vrouwenvelder, Life cycle cost of a hybrid forward osmosis-Low pressure reverse osmosis system for seawater desalination and wastewater recovery, Water Res. 88(2016) 225-234. [60] S. Loeb, Production of energy from concentrated brines by pressure-retarded osmosis:I. Preliminary technical and economic correlations, J. Membr. Sci. 1(1976) 49-63. [61] S. Loeb, F.V. Hessen, D. Shahaf, Production of energy from concentrated brines by pressure-retarded osmosis:Ⅱ. Experimental results and projected energy costs, J. Membr. Sci. 1(1976) 249-269. [62] K. Gerstandt, K.V. Peinemann, S.E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination 224(2008) 64-70. [63] G. Han, S. Zhang, X. Li, T.S. Chung, Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation, Prog. Polym. Sci. 51(2015) 1-27. [64] W.R. Thelin, E. Sivertsen, T. Holt, G. Brekke, Natural organic matter fouling in pressure retarded osmosis, J. Membr. Sci. 438(2013) 46-56. [65] S. Zhang, T.S. Chung, Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density, Environ. Sci. Technol. 47(2013) 10085-10092. [66] C.F. Wan, T.S. Yang, W.X. Gai, Y.D. Lee, T.S. Chung, Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis, J. Membr. Sci. 555(2018) 388-397. [67] M.H. Sharqawy, S.M. Zubair, J.H. Lienhard V, Second law analysis of reverse osmosis desalination plants:An alternative design using pressure retarded osmosis, Energy 36(2011) 6617-6626. [68] C.F. Wan, T.S. Chung, Energy recovery by pressure retarded osmosis (PRO) in SWRO-PRO integrated processes, Appl. Energy 162(2016) 687-698. [69] C.F. Wan, S. Jin, T.S. Chung, Mitigation of inorganic fouling on pressure retarded osmosis (PRO) membranes by coagulation pretreatment of the wastewater concentrate feed, J. Membr. Sci. 572(2019) 658-667. [70] S.C. Chen, G.L. Amy, T.S. Chung, Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation, Water Res. 88(2016) 144-155. [71] Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes:A review, J. Membr. Sci. 499(2016) 201-233. [72] C.F. Wan, T.S. Chung, Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed, J. Membr. Sci. 479(2015) 148-158. [73] G. Han, J.L. Zhou, C.F. Wan, T.S. Yang, T.S. Chung, Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater, Water Res. 103(2016) 264-275. [74] X. Li, T. Cai, G.L. Amy, T.S. Chung, Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis, J. Membr. Sci. 522(2017) 116-123. [75] S. Zhang, Y. Zhang, T.S. Chung, Facile preparation of antifouling hollow fiber membranes for sustainable osmotic power generation, ACS Sustain. Chem. Eng. 4(2016) 1154-1160. [76] Y. Zhang, J.L. Li, T. Cai, Z.L. Cheng, X. Li, T.S. Chung, Sulfonated hyperbranched polyglycerol grafted membranes with antifouling properties for sustainable osmotic power generation using municipal wastewater, J. Membr. Sci. 563(2018) 521-530. [77] N.L. Le, M. Quilitzsch, H. Cheng, P.-Y. Hong, M. Ulbricht, S.P. Nunes, T.S. Chung, Hollow fiber membrane lumen modified by polyzwitterionic grafting, J. Membr. Sci. 522(2017) 1-11. [78] T. Thorsen, T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci. 335(2009) 103-110. [79] E.S.H. Lee, J.Y. Xiong, G. Han, C.F. Wan, Q.Y. Chong, T.S. Chung, A pilot study on pressure retarded osmosis operation and effective cleaning strategies, Desalination 420(2017) 273-282. [80] K. Saito, M. Irie, S. Zaitsu, H. Sakai, H. Hayashi, A. Tanioka, Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water, Desalin. Water Treat. 41(2012) 114-121. [81] G. Han, C.F. Wan, T.S. Chung, in:S. Sarp, N. Hilal (Eds.), Membrane-based salinity gradient processes for water treatment and power generation, Elsevier, 2018, pp. 175-200, Ch. 3. [82] G. Han, J. Zuo, C.F. Wan, T.S. Chung, Hybrid pressure retarded osmosis-membrane distillation (PRO-MD) process for osmotic power and clean water generation, Environ. Sci.:Water Res. Technol. 1(2016) 507-515. [83] J. Kim, M. Park, H.K. Shon, J.H. Kim, Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes, Desalination 380(2016) 85-92. [84] S.H. Chae, J. Seo, J. Kim, Y.M. Kim, J.H. Kim, A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation, Desalination 444(2018) 118-128. [85] Z.L. Cheng, X. Li, T.S. Chung, The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system:A new process to mitigate membrane fouling for sustainable osmotic power generation, J. Membr. Sci. 559(2018) 63-74. [86] M. Gryta, Concentration of NaCl solution by membrane distillation integrated with crystallization, Sep. Sci. Technol. 37(2002) 3535-3558. [87] M.T. Chan, A.G. Fane, J.T. Matheickal, R. Sheikholeslami, Membrane distillation crystallization of concentrated salts-Flux and crystal formation, J. Membr. Sci. 257(2005) 144-155. [88] F. Edwie, T.S. Chung, Development of simultaneous membrane distillationcrystallization (SMDC) technology for treatment of saturated brine, Chem. Eng. Sci. 98(2013) 160-172. [89] C.A. Quist-Jensen, F. Macedonio, E. Drioli, Membrane crystallization for salts recovery from brine-An experimental and theoretical analysis, Desalin. Water Treat. 57(2016) 7593-7603. [90] K.K. Sirkar, Separation of Molecules, macromolecules and particles:Principles, phenomena and processes, Cambridge University Press, 2014, https://doi.org/10.1017/CBO9781107415324.004. [91] P. Wang, T.S. Chung, A conceptual demonstration of freeze desalinationmembrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy, Water Res. 46(2012) 4037-4052. [92] D.M. Zarkadas, K.K. Sirkar, Solid hollow fiber cooling crystallization, Ind. Eng. Chem. Res. 43(2004) 7163-7180. [93] H. Julian, S. Meng, H. Li, Y. Ye, V. Chen, Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment, J. Membr. Sci. 520(2016) 679-692. [94] L. Luo, J. Zhao, T.S. Chung, Integration of membrane distillation (MD) and solid hollow fiber cooling crystallization (SHFCC) systems for simultaneous production of water and salt crystals, J. Membr. Sci. 564(2018) 905-915. [95] D.E. Suk, T. Matsuura, Membrane-based hybrid processes:A review, Sep. Sci. Technol. 41(2006) 595-626. [96] J. Chang, J. Zuo, K.J. Lu, T.S. Chung, Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy, Desalination 449(2018) 16-25. [97] R.K. McGovern, J.H. Lienhard V, On the potential of forward osmosis to energetically outperform reverse osmosis desalination, J. Membr. Sci. 469(2014) 245-250. [98] S. Zhang, P. Wang, X. Fu, T.S. Chung, Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD), Water Res. 52(2014) 112-121. [99] D.L. Zhao, P. Wang, Q. Zhao, N. Chen, X. Lu, Thermoresponsive copolymerbased draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation, Desalination 348(2014) 26-32. [100] Q. Ge, C.H. Lau, M. Liu, A novel multi-charged draw solute that removes organic arsenicals from water in a hybrid membrane process, Environ. Sci. Technol. 52(2018) 3812-3819. [101] C.R. Martinetti, A.E. Childress, T.Y. Cath, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci. 331(2009) 31-39. [102] M. Cappelle, W.S. Walker, T.A. Davis, Improving desalination recovery using zero discharge desalination (ZDD):A process model for evaluating technical feasibility, Ind. Eng. Chem. Res. 56(2017) 10448-10460. [103] T. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management:Drivers, technologies, and future directions, Environ. Sci. Technol. 50(2016) 6846-6855. [104] K.J. Lu, Z.L. Cheng, J. Chang, L. Luo, T.S. Chung, Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies, Desalination 458(2019) 66-75. [105] J. Chang, J. Zuo, K.J. Lu, T.S. Chung, Freeze desalination of seawater using LNG cold energy, Water Res. 102(2016) (2016) 282-293. [106] C.E. Pantoja, Y.N. Nariyoshi, M.M. Seckler, Membrane distillation crystallization applied to brine desalination:A hierarchical design procedure, Ind. Eng. Chem. Res. 54(2015) 2776-2793. [107] M. Rezaei, D.M. Warsinger, J.H. Lienhard V, M.C. Duke, T. Matsuura, W.M. Samhaber, Wetting phenomena in membrane distillation:Mechanisms, reversal, and prevention, Water Res. 139(2018) 329-352. [108] P. Wang, T.S. Chung, Recent advances in membrane distillation processes:Membrane development, configuration design and application exploring, J. Membr. Sci. 474(2015) 39-56. [109] M. Khayet, T. Matsuura, Membrane distillation:Principles and applications, Elsevier B.V., 2011, https://doi.org/10.1016/B978-0-444-53126-1.10001-6. [110] N. Thomas, M.O. Mavukkandy, S. Loutatidou, H.A. Arafat, Membrane distillation research & implementation:Lessons from the past five decades, Sep. Purif. Technol. 189(2017) 108-127. [111] D.L. Shaffer, L.H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N. Y. Yip, M. Elimelech, Desalination and reuse of high-salinity shale gas produced water:Drivers, technologies, and future directions, Environ. Sci. Technol. 47(2013) 9569-9583. [112] C. Boo, J. Lee, M. Elimelech, Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation, Environ. Sci. Technol. 50(2016) 12275-12282. [113] S. Lin, S. Nejati, C. Boo, Y. Hu, C.O. Osuji, M. Elimelech, Omniphobic membrane for robust membrane distillation, Environ. Sci. Technol. Lett. 1(2014) 443-447. [114] K.J. Lu, J. Zuo, J. Chang, H.N. Kuan, T.S. Chung, Omniphobic hollow-fiber membranes for vacuum membrane distillation, Environ. Sci. Technol. 52(2018) 4472-4480. [115] Y.C. Woo, Y. Chen, L.D. Tijing, S. Phuntsho, T. He, J.S. Choi, S.H. Kim, H.K. Shon, CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation, J. Membr. Sci. 529(2017) 234-242. [116] J. Lee, C. Boo, W.H. Ryu, A.D. Taylor, M. Elimelech, Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold, ACS Appl. Mater. Interfaces 8(2016) 11154-11161. [117] R. Zheng, Y. Chen, J. Wang, J. Song, X.M. Li, T. He, Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation, J. Membr. Sci. 555(2018) 197-205. [118] Y.C. Woo, Y. Kim, M. Yao, L.D. Tijing, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique, Environ. Sci. Technol. 52(2018) 2186-2196. [119] L. Deng, H. Ye, X. Li, P. Li, J. Zhang, X. Wang, M. Zhu, B.S. Hsiao, Self-roughened omniphobic coatings on nanofibrous membrane for membrane distillation, Sep. Purif. Technol. 206(2018) 14-25. [120] C. Lu, C. Su, H. Cao, X. Ma, F. Duan, J. Chang, Y. Li, F-POSS based omniphobic membrane for robust membrane distillation, Mater. Lett. 228(2018) 85-88. [121] J. Chang, J. Zuo, L. Zhang, G.S. O'Brien, T.S. Chung, Using green solvent, triethyl phosphate (TEP) to fabricate highly porous PVDF hollow fiber membranes for membrane distillation, J. Membr. Sci. 539(2017) 295-304. [122] B. Li, K.K. Sirkar, Novel membrane and device for vacuum membrane distillation-based desalination process, J. Membr. Sci. 257(2005) 60-75. [123] P. Wang, T.S. Chung, A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation, Environ. Sci. Technol. 47(2013) 6272-6278. [124] L. Francis, N. Ghaffour, A.A. Alsaadi, G.L. Amy, Material gap membrane distillation:A new design for water vapor flux enhancement, J. Membr. Sci. 448(2013) 240-247. [125] A.S. Alsaadi, N. Ghaffour, J.D. Li, S. Gray, L. Francis, H. Maab, G.L. Amy, Modeling of air-gap membrane distillation process:A theoretical and experimental study, J. Membr. Sci. 445(2013) 53-65. [126] L.M. Camacho, L. Dumée, J. Zhang, J. Li, M. Duke, J. Gomez, S. Gray, Advances in membrane distillation for water desalination and purification applications, Water 5(2013) 94-196. [127] A.C. Sun, W. Kosar, Y. Zhang, X. Feng, Vacuum membrane distillation for desalination of water using hollow fiber membranes, J. Membr. Sci. 455(2014) 131-142. [128] M.A.E.R. Abu-Zeid, Y. Zhang, H. Dong, L. Zhang, H.L. Chen, L. Hou, A comprehensive review of vacuum membrane distillation technique, Desalination 356(2015) 1-14. [129] J. Zuo, T.S. Chung, PVDF hollow fibers with novel sandwich structure and superior wetting resistance for vacuum membrane distillation, Desalination 417(2017) 94-101. [130] X. Huang, Y.H. Yu, O.L. de Llergo, S.M. Marquez, Z. Cheng, Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation, RSC Adv. 7(2017) 9495-9499. [131] G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets, Nano Energy 41(2017) 269-284. [132] L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating, Adv. Mater. 27(2015) 4889-4894. [133] A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination, Adv. Mater. (2016) 1-6. [134] A.V. Dudchenko, C. Chen, A. Cardenas, J. Rolf, D. Jassby, Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes, Nat. Nanotechnol. 12(2017) 557-563. [135] Z.V.P. Murthy, L.B. Chaudhari, Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane, Desalination 247(2009) 610-622. [136] K.Y. Wang, T.S. Chung, Polybenzimidazole nanofiltration hollow fiber for cephalexin separation, AIChE J. 52(2006) 1363-1377. [137] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes:A review of research trends over the past decade, J. Water Process Eng. 19(2017) 164-171. [138] J. Gao, Z.W. Thong, K.Y. Wang, T.S. Chung, Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes, J. Membr. Sci. 541(2017) 413-424. [139] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(2017) 380-383. [140] G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(2016) 13384-13397. [141] Y. Zhang, T.S. Chung, Graphene oxide membranes for nanofiltration, Curr. Opin. Chem. Eng. 16(2017) 9-15. [142] Y. Jiang, P. Biswas, J.D. Fortner, A review of recent developments in grapheneenabled membranes for water treatment, Environ. Sci.:Water Res. Technol. 2(2016) 915-922. [143] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(2017) 1137. [144] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(2013) 3715-3723. [145] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23(2013) 3693-3700. [146] Y. Zhang, S. Zhang, J. Gao, T.S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci. 515(2016) 230-237. [147] Y. Zhang, S. Japip, T.S. Chung, Thermally evolved and boron bridged graphene oxide (GO) frameworks constructed on microporous hollow fiber substrates for water and organic matters separation, Carbon 123(2017) 193-204. [148] Y. Lou, G. Liu, S. Liu, J. Shen, W. Jin, A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification, Appl. Surf. Sci. 307(2014) 631-637. [149] W.S. Hung, C.H. Tsou, M.D. Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(2014) 2983-2990. [150] D. Hua, R.K. Rai, Y. Zhang, T.S. Chung, Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration, Chem. Eng. Sci. 161(2017) 341-349. [151] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(2014) 752-754. [152] G. Liu, W. Jin, Graphene oxide membrane for molecular separation:Challenges and opportunities, Sci. China Mater. 61(2018) 1021-1026. [153] Y.R. He, D.L. Zhao, T.S. Chung, Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal, J. Membr. Sci. 564(2018) 483-491. [154] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, J. Gu, Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration, ACS Appl. Mater. Interfaces 9(2017) 11082-11094. [155] D.L. Zhao, T.S. Chung, Applications of carbon quantum dots (CQDs) in membrane technologies:A review, Water Res. 147(2018) 43-49. [156] X. Yang, L. Yan, F. Ran, A. Pal, J. Long, L. Shao, Interface-confined surface engineering constructing water-unidirectional Janus membrane, J. Membr. Sci. 576(2019) 9-16. [157] H. Sun, X. Yang, Y. Zhang, X. Cheng, Y. Xu, Y. Bai, L. Shao, Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending, J. Membr. Sci. 563(2018) 22-30. |
[1] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[4] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[5] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[6] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[8] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[9] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[10] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[11] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[12] | Yingxiang Ni, Can Yuan, Shilong Li, Jian Lu, Lei Yan, Wei Gu, Weihong Xing, Wenheng Jing. Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 59-62. |
[13] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[14] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[15] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 101-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||