[1] L. R., LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Philos. Mag. 32(192) (1975) 529-546. [2] K.T. Yu, X.G. Yuan, Introduction to Computational Mass Transfer, Tianjin University Press, 2011(in Chinese). [3] A. Okhotsimskii, M. Hozawa, Schlieren visualization of natural convection in binary gas-liquid systems, Chem. Eng. Sci. 53(14) (1998) 2547-2573. [4] B. Arendt, D. Dittmar, R. Eggers, Interaction of interfacial convection and mass transfer effects in the system CO2-water, Int. J. Heat Mass Transf. 47(17-18) (2004) 3649-3657. [5] C.X. Liu, A.W. Zeng, X.G. Yuan, et al., Experimental study on mass transfer near gas-liquid interface through quantitative Schlieren method, Chem. Eng. Res. Des. 86(2) (2008) 201-207. [6] Y. Sha, H. Cheng, Y.H. Yu, The numerical analysis of the gas-liquid absorption process accompanied by Rayleigh convection, Chin. J. Chem. Eng. 10(5) (2002) 539-544. [7] B. Fu, X.G. Yuan, B.T. Liu, et al., Characterization of Rayleigh convection in interfacial mass transfer by lattice-Boltzmann simulation and experimental verification, Chin. J. Chem. Eng. 19(5) (2011) 845-854. [8] S.Y. Chen, X.G. Yuan, B. Fu, et al., Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method, Front. Chem. Sci. Eng. 5(4) (2011) 448-454. [9] S.Y. Chen, B. Fu, X.G. Yuan, et al., Lattice Boltzmann method for simulation of solutal interfacial convection in gas-liquid system, Ind. Eng. Chem. Res. 51(33) (2012) 10955-10967. [10] N. Kurenkova, K. Eckert, E. Zienicke, et al., Desorption-driven convection in aqueous alcohol solution, Interfacial Fluid Dynamics & Transport Processes 19(6) (1970) 403-416. [11] K.K. Tan, R.B. Thorpe, Gas diffusion into viscous and non-Newtonian liquids, Chem. Eng. Sci. 47(13) (1992) 3565-3572. [12] K.K. Tan, R.B. Thorpe, The onset of convection induced by buoyancy during gas diffusion in deep fluids, Chem. Eng. Sci. 54(19) (1999) 4179-4187. [13] M.T. Hyun, C.K. Min, Onset of buoyancy-driven convection in the horizontal fluid layer subjected to time-dependent heating from below, Int. Commun. Heat Mass Transfer 30(7) (2003) 965-974. [14] C.K. Min, D.Y. Yoon, K.C. Chang, Onset of buoyancy-driven instability in gas diffusion systems, Ind. Eng. Chem. Res. 45(21) (2006) 7321-7328. [15] E.D. Burger, L.M. Blair, J.A. Quinn, Intermittent convection:Confirmation of a model for mass transfer into stratified fluid layers, Chem. Eng. Sci. 29(7) (1974) 1545-1555. [16] S.U. Rahman, M.A. Al-Saleh, R.N. Sharma, An experimental study on natural convection from vertical surfaces embedded in porous media, Ind. Eng. Chem. Res. 39(1) (2000) 214-218. [17] S.U. Rahman, Natural convection along vertical wavy surfaces:An experimental study, Chem. Eng. J. 84(3) (2001) 587-591. [18] Y. Wang, Z.T. Zhang, Influence of interfacial turbulence on the mass transfer rate in physical absorption processes, J. Beijing Univ. Chem. Technol. 29(6) (2002) 1-4. [19] Z.F. Sun, K.T. Yu, S.Y. Wang, et al., Absorption and desorption of carbon dioxide into and from organic solvents:Effects of Rayleigh and Marangoni instability, Ind. Eng. Chem. Res. 41(7) (2002) 1905-1913. [20] W. Chen, S.Y. Chen, X.G. Yuan, et al., PIV measurement for Rayleigh convection and its effect on mass transfer, Chin. J. Chem. Eng. 22(10) (2014) 1078-1086. [21] K. Guo, C.J. Liu, S.Y. Chen, et al., Spatial scale effects on Rayleigh convection and interfacial mass transfer characteristics in CO2 absorption, Chem. Eng. Technol. 38(1) (2015) 23-32. [22] H. Haken, Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices, 1st ed., Springer-Verlag, 1983. [23] H. Haken, Synergetics:Introduction and Advanced Topics, 3rd ed., Springer, 1983. [24] Z.Y. Guo, D.Y. Li, B.X. Wang, A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transf. 41(14) (1998) 2221-2225. [25] Z.Y. Guo, W.Q. Tao, R.K. Shah, The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer, Int. J. Heat Mass Transf. 48(9) (2005) 1797-1807. [26] W.Q. Tao, Z.Y. Guo, B.X. Wang, Field synergy principle for enhancing convective heat transfer-Its extension and numerical verifications, Int. J. Heat Mass Transf. 45(18) (2002) 3849-3856. [27] M. Zeng, W.Q. Tao, Numerical verification of the field synergy principle for turbulent flow, J. Enhanc. Heat Transfer 11(4) (2004) 453-460. [28] M. Yang, M. Zhao, L.X. Zhang, et al., Field synergy and stability in convection heat transfer, J. Eng. Thermophys. 23(2002) 73-76. [29] X.P. Lu, S.R. Yu, Divergence effect of field synergy for convective heat transfer, CIESC J. 62(9) (2011) 2464-2468(in Chinese). [30] X. Lu, S. Yu, D. Guo, From field synergy to thermodynamics coupling:Thermodynamics mechanism for convective heat transfer enhancement, J. Mech. Eng. 51(10) (2015) 160-171. [31] Q. Chen, J.A. Meng, Field synergy analysis and optimization of the convective mass transfer in photocatalytic oxidation reactors, Int. J. Heat Mass Transf. 51(11-12) (2008) 2863-2870. [32] K. Guo, C.J. Liu, S.Y. Chen, et al., Modeling with statistical hydrodynamic quantities of mass transfer across gas-liquid interface with Rayleigh convection, Chem. Eng. Sci. 135(2015) 33-44. [33] A. Arce, A.A. Jr, A. Eva Rodil, et al., Density, refractive index, and speed of sound for 2-ethoxy-2-methylbutane + ethanol + water at 298.15 K, J. Chem. Eng. Data 45(4) (2000) 536-539. [34] M. Takahashi, Y. Kobayashi, H. Takeuchi, Diffusion coefficients and solubilities of carbon dioxide in binary mixed solvents, J. Chem. Eng. Data 27(3) (1982) 328-331. [35] D. Dittmar, A. Fredenhagen, S.B. Oei, et al., Interfacial tensions of ethanol-carbon dioxide and ethanol-nitrogen. Dependence of the interfacial tension on the fluid density-Prerequisites and physical reasoning, Chem. Eng. Sci. 58(7) (2003) 1223-1233. [36] H.L. Yu, A.W. Zeng, Visualization and quantitative analysis for Marangoni convection in process of gas-liquid mass transfer, CIESC J. 65(10) (2014) 3760-3768(in Chinese). [37] M. Chen, S. Zhao, A.W. Zeng, et al., Quantitative analysis of Rayleigh convection in interfacial mass transfer process, CIESC J. 67(11) (2016) 4566-4573(in Chinese). [38] P.K. Panigrahi, K. Muralidhar, Schlieren and Shadowgraph Methods in Heat and Mass Transfer, Springer, New York, 2012. [39] Y.C. Hua, T. Zhao, Z.Y. Guo, Optimization of the one-dimensional transient heat conduction problems using extended entransy analyses, Int. J. Heat Mass Transf. 116(2018) 166-172. [40] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 28(2), John Wiley & Sons, 2002, pp. 338-359. [41] Z.Y. Guo, H.Y. Zhu, X.G. Liang, Entransy-A physical quantity describing heat transfer ability, Int. J. Heat Mass Transf. 50(13-14) (2007) 2545-2556. [42] X. Cheng, Entransy and Its Applications in Heat Transfer Optimization, PhD Thesis, Tsinghua University, Beijing, 2004(in Chinese). [43] Q. Chen, J.X. Ren, Z.Y. Guo, Field synergy analysis and optimization of decontamination ventilation designs, Int. J. Heat Mass Transf. 51(3-4) (2008) 873-881. [44] Q. Chen, Irreversibility and Optimization of Convective Transport Processes, PhD Thesis, Tsinghua University, Beijing, 2008(in Chinese). [45] L.G. Chen, Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle, SCIENCE CHINA Technol. Sci. 57(12) (2014) 2305-2327. [46] Q. Chen, J.X. Ren, Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation, Chin. Sci. Bull. 53(2008) 3753-3761. [47] D. Li, M. Chen, S. Zhao, et al., Entropy generation analysis of Rayleigh convection in gas-liquid mass transfer process, Chem. Eng. Res. Des. 135C (2018) 359-369. |