[1] L.S. Fan, K. Tsuchiga, Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Butterworth-Heinemann, UK, 1990. [2] J. Zhang, L.S. Fan, On the rise velocity of an interactive bubble in liquids, Chem. Eng. J. 92(1-3) (2003) 169-176. [3] C. Onsafety, Status Report on Filtered Containment Venting, 2014. [4] M. Jamialahmadi, H. Müuller-Steinhagen, Effect of superficial gas velocity on bubble size, terminal bubble rise velocity and gas hold-up in bubble columns, Dev. Chem. Eng. Miner. Process. (1) (1993) 16-31. [5] N. Kantarci, F. Borak, K.O.U.B. Ulgen, Bubble column reactors, Process Biochem. (7) (2005) 2263-2283. [6] V.T. Nguyen et al., Modeling of bubble coalescence and break-up considering turbulent suppression phenomena in bubbly two-phase flow, Int. J. Multiphase Flow 54(2013) 31-42. [7] J. Solsvik, H.A. Jakobsen, Development of fluid particle breakup and coalescence closure models for the complete energy spectrum of isotropic turbulence, Ind. Eng. Chem. Res. 55(5) (2016) 1449-1460. [8] Y. Liao, D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci. 65(10) (2010) 2851-2864. [9] N. Yang, Q. Xiao, A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors, Chem. Eng. Sci. 170(2017) 241-250. [10] M. Jamialahmadi, H. Müller-Steinhagen, Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns, Chem. Eng. J. (1) (1992) 47-56. [11] M.C. Ruzicka, M.M. Vecer, S. Orvalho, et al., Effect of surfactant on homogeneous regime stability in bubble column, Chem. Eng. Sci. 63(4) (2008) 951-967. [12] A.A. Mouza, G.K. Dalakoglou, S.V. Paras, Effect of liquid properties on the performance of bubble column reactors with fine pore spargers, Chem. Eng. Sci. 60(5) (2005) 1465-1475. [13] N.A. Kazakis, A.A. Mouza, S.V. Paras, Coalescence during bubble formation at two neighbouring pores:An experimental study in microscopic scale, Chem. Eng. Sci. 63(21) (2008) 5160-5178. [14] G. Marrucci, A theory of coalescence, Chem. Eng. Sci. 24(6) (1969) 975-985. [15] K. Tse, T. Martin, C.M. Mcfarlane, et al., Visualisation of bubble coalescence in a coalescence cell, a stirred tank and a bubble column, Chem. Eng. Sci. 53(23) (1998) 4031-4036. [16] E.D. Wetzel, C.L. Tucker III, Area tensors for modeling microstructure during laminar liquid-liquid mixing, Int. J. Multiphase Flow 25(1) (1999) 35-61. [17] D. Lhuillier, Evolution of the volumetric interfacial area in two-phase mixtures, C. R. Mécanique 332(2) (2004) 103-108. [18] G. Tryggvason, M. Ma, J. Lu, DNS assisted modeling of bubbly flows in vertical channels, Nucl. Sci. Eng. 184(3) (2016) 312-320. [19] M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels, Int. J. Multiphase Flow 85(2016) 336-347. [20] M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system, Phys. Fluids 27(9) (2015) 1-16. [21] M.J. Prince, H. Blanch, Bubble coalescence and break-up in air sparged biochemical reactors, Electrochim. Acta 49(4) (1990) 515-523. [22] E. Camarasa, C. Vial, S. Poncin, et al., Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column, Chem. Eng. Process. Process Intensif. 38(4-6) (1999) 329-344. [23] J.R. Crabtree, J. Bridgwater, Bubble coalescence in viscous liquids, Chem. Eng. Sci. 26(6) (1971) 839-851. [24] D. Dekée, P.J. Carreau, J. Mordarski, Bubble velocity and coalescence in viscoelastic liquids, Chem. Eng. Sci. 41(9) (1986) 2273-2283. [25] P. Calderbank, M. Moo-Young, R. Bibby, Coalescence in Bubble Reactors and Absorbers, in:Proceedings of the 3rd European Symposium on Chemical Reaction Engineering, 1964. [26] J.W. Kim, W.K. Lee, Coalescence behavior of two bubbles in stagnant liquids, J. Chem. Eng. Jpn 20(5) (1987) 448-453. [27] M. Martín, J.M. Garcia, F.J. Montes, et al., On the effect of the orifice configuration on the coalescence of growing bubbles, Chem. Eng. Process. Process Intensif. 47(9) (2008) 1799-1809. [28] R.D. Kirkpatrick, M.J. Lockett, The influence of approach velocity on bubble coalescence, Chem. Eng. Sci. 29(12) (1974) 2363-2373. [29] P.K. Weissenborn, R.J. Pugh, Surface tension of aqueous solutions of electrolytes:Relationship with ion hydration, oxygen solubility, and bubble coalescence, J. Colloid Interface Sci. 184(2) (1996) 550-563. [30] J. Wen, H.F. Gu, Z.N. Sun, et al., A theoretical model and experiment validation on filtration characteristics of methyl iodide in bubble column, Int. J. Heat Mass Transf. 114(2017) 1263-1273. [31] R.M. Pashley, J.N. Israelachvili, A comparison of surface forces and interfacial properties of mica in purified surfactant solutions, Colloids Surf. 2(2) (1981) 169-187. [32] U. Hofmeier, V.V. Yaminsky, H.K. Christenson, Observations of solute effects on bubble formation, J. Colloid Interface Sci. 174(1) (1995) 199-210. [33] V.S.J. Craig, B.W. Ninham, R.M. Pashley, The effect of electrolytes on bubble coalescence in water, J. Phys. Chem. 97(39) (1993) 10192-10197. [34] G. Marrucci, L. Nicodemo, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chem. Eng. Sci. 22(9) (1967) 1257-1265. [35] R. Chhabra, V. Shankar, Coulson and Richardson's Chemical Engineering, 7th edition, Butterworth-Heinemann, UK, 2017. [36] Y. Park, A.L. Tyler, N. de Nevers, The chamber orifice interaction in the formation of bubbles, Chem. Eng. Sci. (8) (1977) 907-916. [37] D.F. Che, J.J.J. Chen, Bubble formation and liquid weeping at an orifice submerged in a liquid, Chem. Ing. Tech. 62(11) (2010) 947-949. [38] L. Zhang, M. Shoji, Aperiodic bubble formation from a submerged orifice, Chem. Eng. Sci. 56(18) (2001) 5371-5381. [39] Prince, J. Michael, Blanch, et al., coalescence and break-up in air Sparged bubble columns, AIChE J. 36(10) (2010) 1485-1499. [40] P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A Quetelet, Brussels, Quetelet 10(10) (2008) 113-121. [41] S. Aoyama, K. Hayashi, S. Hosokawa, et al., Shapes of ellipsoidal bubbles in infinite stagnant liquids, Int. J. Multiphase Flow 79(15) (2016) 23-30. [42] J.B. Shen, L. Wang, Experimental study on the effect of interfacial mass transfer on coalescence of gas bubbles, Chin. J. Process. Eng. 16(2) (2016) 204-209(in Chinese). [43] E.M. Cachaza, M.E. Diaz, F.J. Montes, et al., Unified study of flow regimes and gas holdup in the presence of positive and negative surfactants in a nonuniformly aerated bubble column, Chem. Eng. Sci. 66(18) (2011) 4047-4058. |