[1] T.K. Sherwood, R.L. Pigford, C.R.Wilke,Mass Transfer,McGraw-Hill, New York, 1975. 1-677. [2] N. Imaishi, K. Fujinawa, M. Hozawa, Y. Suzuki, Interfacial turbulence in gas-liquid mass transfer, Int. Chem. Eng. 22 (4) (1982) 659-665. [3] O. Smigelschi, D.G. Suciu, E. Ruckenstein, Absorption under the action of artificially provoked Marangoni effect, Chem. Eng. Sci. 24 (8) (1969) 1227-1234. [4] F.J. Zuiderweg, A. Harmens, The influence of surface phenomena on the performance of distillation columns, Chem. Eng. Sci. 9 (2-3) (1958) 89-103. [5] L. Rayleigh, On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Philos. Mag. Ser. 6 32 (192) (1916) 529-546. [6] L.E. Scriven, C.V. Sternling, The Marangoni effects, Nature 187 (4733) (1960) 186-188. [7] J.B. Lewis, H.R.C. Pratt, Oscillating droplets, Nature 171 (4365) (1953) 1155-1156. [8] A. Orell, J.W. Westwater, Spontaneous interfacial cellular convection accompanying mass transfer: ethylene glycol-acetic acid-ethyl acetate, AIChE J. 8 (3) (1962) 350-356. [9] S.R.M. Ellis, M. Biddulph, Interfacial turbulence measurements, Chem. Eng. Sci. 21 (11) (1966) 1107-1109. [10] A. Okhotsimskii, M. Hozawa, Schlieren visualization of natural convection in binary gas-liquid systems, Chem. Eng. Sci. 53 (14) (1998) 2547-2573. [11] Z.F. Sun, K.T. Yu, S.Y. Wang, Y.Z. Miao, Absorption and desorption of carbon dioxide into and from organic solvents: Effects of Rayleigh and Marangoni instability, Ind. Eng. Chem. Res. 41 (7) (2002) 1905-1913. [12] W. Chen, Experimental Measurement of Gas-Liquid Interfacial Rayleigh-Bénard- Marangoni Convection and Mass Transfer(Ph.D. Thesis) Tianjin University, Tianjin, China, 2010. (in Chinese). [13] B. Fu, X.G. Yuan, B.T. Liu, S.Y. Chen, H.S. Zhang, A.W. Zeng, G.C. Yu, Characterization of Rayleigh convection in interfacial mass transfer by lattice Boltzmann simulation and experimental verification, Chin. J. Chem. Eng. 19 (5) (2011) 845-854. [14] L.M. Yu, A.W. Zeng, K.T. Yu, Effect of interfacial velocity fluctuations on the enhancement of the mass-transfer process in falling-film flow, Ind. Eng. Chem. Res. 45 (3) (2006) 1201-1210. [15] S.H. Zhang, Z.M. Wang, Y.F. Su, Mass transfer and interfacial turbulence in a laminar film: study of transferring two solutes separately and simultaneously through liquid-liquid interface, Chem. Eng. Res. Des. 68 (1) (1990) 84-92. [16] C.V. Sternling, L.E. Scriven, Interfacial turbulence: hydrodynamic instability and the Marangoni effect, AIChE J. 5 (4) (1959) 514-523. [17] J. Bragard, S.G. Slavtchev, G. Lebon, Nonlinear solutal Marangoni instability in a liquid layer with an adsorbing upper surface, J. Colloid Interface Sci. 168 (2) (1994) 402-413. [18] Z.F. Sun, M. Fahmy, Onset of Rayleigh-Bénard-Marangoni convection in gas liquid mass transfer with two-phase flow: theory, Ind. Eng. Chem. Res. 45 (9) (2006) 3293-3302. [19] H.W. Hoogstraten, H.C.J. Hoefsloot, L.P.B.M. Janssen, Marangoni convection in V-shaped containers, J. Eng. Math. 26 (1) (1992) 21-37. [20] Y. Sha, H. Cheng, Y.H. Yu, The numerical analysis of the gas-liquid absorption process accompanied by Rayleigh convection, Chin. J. Chem. Eng. 10 (5) (2002) 539-544. [21] J.F. Wang, C. Yang, Z.S. Mao, Numerical simulation of Marangoni effects of single drops induced by interphase mass transfer in liquid-liquid extraction systems by the level set method, Sci. China Ser. B Chem. 51 (7) (2008) 684-694. [22] X. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E. 55 (3) (1997) 2780-2788. [23] Z.L. Guo, B.C. Shi, C.G. Zheng, A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Methods Fluids 39 (4) (2002) 325-342. [24] P. Kao, R. Yang, Simulating oscillatory flows in Rayleigh-Bénard convection using the lattice Boltzmann method, Int. J. Heat Mass Transfer 50 (17-18) (2007) 3315-3328. [25] S. Chen, J. Tölke, M. Krafczyk, Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients, Int. J. Heat Fluid Flow 31 (2) (2010) 217-226. [26] A.A. Mohamad, R. Bennacer,M. El-Ganaoui, Double dispersion, natural convection in an open end cavity simulation via Lattice Boltzmann Method, Int. J. Therm. Sci. 49 (10) (2010) 1944-1953. [27] D.K. Sun, M.F. Zhu, S.Y. Pan, D. Raabe, Numerical Modeling of dendritic growth in alloy solidification with forced convection, Int. J. Mod. Phys. B 23 (6-7) (2009) 1609-1614. [28] S.Y. Chen, X.G. Yuan, B. Fu, K.T. Yu, Simulation of interfacialMarangoni convection in gas-liquid mass transfer by lattice Boltzmann method, Front. Chem. Sci. Eng. 5 (4) (2011) 448-454. [29] S.Y. Chen, B. Fu, X.G. Yuan, H.S. Zhang, W. Chen, K.T. Yu, Lattice Boltzmann method for simulation of solutal interfacial convection in gas-liquid system, Ind. Eng. Chem. Res. 51 (33) (2012) 10955-10967. [30] S. Mishra, H. Roy, Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method, J. Comput. Phys. 223 (1) (2007) 89-107. [31] A. Mezrhab, Hybrid lattice-Boltzmann finite-difference simulation of convective flows, Comput. Fluids 33 (4) (2004) 623-641. [32] M. Jami, A. Mezrhab, M.h. Bouzidi, P. Lallemand, Lattice-Boltzmann computation of natural convection in a partitioned enclosure with inclined partitions attached to its hot wall, Physica A 368 (2) (2006) 481-494. [33] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York, 2001. 1-304. [34] D. Sun, M. Zhu, S. Pan, D. Raabe, Lattice Boltzmann modeling of dendritic growth in a forced melt convection, Acta Mater. 57 (6) (2009) 1755-1767. [35] Q. Chang, J.I.D. Alexander, Application of the lattice Boltzmannmethod to two-phase Rayleigh-Benard convection with a deformable interface, J. Comput. Phys. 212 (2) (2006) 473-489. [36] Y.H. Qian, D. D'Humieres, P. Lallemand, Lattice BGK models forNavier-Stokes equation, Europhys. Lett. 17 (6) (1992) 479-484. [37] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1) (1998) 329-364. [38] D. Raabe, Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering, Model. Simul. Mater. Sci. Eng. 12 (6) (2004) R13-R46. [39] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (3) (1954) 511-525. [40] Z.L. Guo, T.S. Zhao, Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E. 66 (3) (2002) 036304. [41] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys. 81 (1) (1995) 379-393. [42] N.S. Martys, H. Chen, Simulation of multicomponent fluids in complex threedimensional geometries by the lattice Boltzmann method, Phys. Rev. E. 53 (1) (1996) 743-750. [43] G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Springer, Berlin, 2001. 1-376. [44] K.K. Tan, B.T. Tey, Y.W. Tan, Onset of natural convection in gas-gas system induced by bottom-up transientmass diffusion, Eng. Appl. Comp. FluidMech. 4 (4) (2010) 475-482. [45] B. Fu, B.T. Liu, X.G. Yuan, S.Y. Chen, K.T. Yu, Modeling of Rayleigh convection in gas- liquid interfacial mass transfer using lattice Boltzmann method, Chem. Eng. Res. Des. 91 (3) (2013) 437-447. [46] L.M. Yu, The Study of Marangoni Effect on the Gas-Liquid Mass Transfer Process(Ph.D. Thesis) Tianjin University, Tianjin, China, 2005. (in Chinese). |