[1] J.G. Speight, The Desulfurization of Heavy Oils and Residua, CRC Press, 1999. [2] M.R. Riazi, Y.A. Roomi, A method to predict solubility of hydrogen in hydrocarbons and their mixtures, Chem. Eng. Sci. 62(2007) 6649-6658. [3] I.V. Babich, J.A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams:A review, Fuel 82(2003) 607-631. [4] A.N. Harji, P.E. Koppel, W.L. Mazurek, P. Meysami, Processing options for bitumen upgrading, Canadian International Petroleum Conference, Petroleum Society of Canada, 2003 https://doi.org/10.2118/2003-140. [5] H. Cai, J.M. Shaw, K.H. Chung, Hydrogen solubility measurements in heavy oil and bitumen cuts, Fuel 80(2001) 1055-1063. [6] M. Saajanlehto, P. Uusi-Kyyny, V. Alopaeus, Hydrogen solubility in heavy oil systems:Experiments and modeling, Fuel 137(2014) 393-404. [7] C. Liu, G. Que, Determination of hydrogen solubilities in petroleum fractions, Pet. Refin. Eng. 29(1999) 33-36. [8] S. Liaw, S. Chiang, G.E. Klinzing, Hydrogen solubility of hydrogen-methane-tetralin and hydrogen-ethane-tetralin systems at elevated temperatures and pressures, Fuel 70(1991) 771-777. [9] Z. Zhou, Z. Cheng, D. Yang, X. Zhou, W. Yuan, Solubility of hydrogen in pyrolysis gasoline, J. Chem. Eng. Data 51(2006) 972-976. [10] L.J. Florusse, C.J. Peters, J.C. Pamies, L.F. Vega, H. Meijer, Solubility of hydrogen in heavy n-alkanes:Experiments and SAFT modeling, AIChE J. 49(2003) 3260-3269. [11] L.R. Field, E. Wilhelm, R. Battino, The solubility of gases in liquids 6. Solubility of N2, O2, CO, CO2, CH4, and CF4 in methylcyclohexane and toluene at 283 to 313 K, J. Chem. Thermodyn. 6(1974) 237-243. [12] P.J. Hesse, R. Battino, P. Scharlin, E. Wilhelm, Solubility of gases in liquids. 20. Solubility of He, Ne, Ar, Kr, N2, O2, CH4, CF4, and SF6 in n-alkanes n-Cl H2l+2(6≤ l ≤ 16) at 298.15 K, J. Chem. Eng. Data 41(1996) 195-201. [13] M. Zirrahi, H. Hassanzadeh, J. Abedi, M. Moshfeghian, Prediction of solubility of CH4, C2H6, CO2, N2 and CO in bitumen, Can. J. Chem. Eng. 92(2014) 563-572. [14] A. Klamt, Conductor-like screening model for real solvents:A new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. 99(1995) 2224-2235. [15] A. Klamt, F. Eckert, COSMO-RS:A novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172(2000) 43-72. [16] F. Eckert, A. Klamt, Validation of the COSMO-RS method:Six binary systems, Ind. Eng. Chem. Res. 40(2001) 2371-2378. [17] S. Lin, J. Chang, S. Wang, W.A. Goddard, S.I. Sandler, Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model, J. Phys. Chem. A 108(2004) 7429-7439. [18] A. Klamt, COSMO-RS:From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier, 2005. [19] A. Klamt, F. Eckert, M. Diedenhofen, Prediction or partition coefficients and activity coefficients of two branched compounds using COSMOtherm, Fluid Phase Equilib. 285(2009) 15-18. [20] V.R. Ferro, E. Ruiz, M. Tobajas, J.F. Palomar, Integration of COSMO-based methodologies into commercial process simulators:Separation and purification of reuterin, AIChE J. 58(2012) 3404-3415. [21] A. Klamt, F. Eckert, M. Diedenhofen, M.E. Beck, First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale, J. Phys. Chem. A 107(2003) 9380-9386. [22] Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chem. Rev. 114(2014) 1289-1326. [23] C.C. Pye, T. Ziegler, E. Van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package-part II. COSMO for real solvents, Can. J. Chem. 87(2009) 790-797. [24] Z. Lei, J. Yuan, J. Zhu, Solubility of CO2 in propanone, 1-ethyl-3-methylimidazolium tetrafluoroborate, and their mixtures, J. Chem. Eng. Data 55(2010) 4190-4194. [25] Z. Lei, C. Dai, Q. Yang, J. Zhu, B. Chen, UNIFAC model for ionic liquid-CO (H2) systems:An experimental and modeling study on gas solubility, AIChE J. 60(2014) 4222-4231. [26] C. Dai, W. Wei, Z. Lei, Solubility of CO2 in the mixture of methanol and ZIF-8 at low temperatures, J. Chem. Eng. Data 60(2015) 1311-1317. [27] Y.J. Heintz, L. Sehabiague, B.I. Morsi, K.L. Jones, D.R. Luebke, H.W. Pennline, Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent, Energy Fuel 23(2009) 4822-4830. [28] H.W. Pennline, D.R. Luebke, K.L. Jones, C.R. Myers, B.I. Morsi, Y.J. Heintz, J.B. Ilconich, Progress in carbon dioxide capture and separation research for gasification-based power generation point sources, Fuel Process. Technol. 89(2008) 897-907. [29] Y.J. Heintz, L. Sehabiague, B.I. Morsi, K.L. Jones, H.W. Pennline, Novel physical solvents for selective CO2 capture from fuel gas streams at elevated pressures and temperatures, Energy Fuel 22(2008) 3824-3837. [30] R.V. Chaudhari, R.V. Gholap, G. Emig, H. Hofmann, Gas-liquid mass transfer in "dead-end" autoclave reactors, Can. J. Chem. Eng. 65(1987) 744-751. [31] J. Kumełan, D. Tuma, G. Maurer, Partial molar volumes of selected gases in some ionic liquids, Fluid Phase Equilib. 275(2009) 132-144. [32] E. Brunner, Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K, J. Chem. Eng. Data 30(1985) 269-273. [33] M.M.P. Zieverink, M.T. Kreutzer, A. Freek Kapteijn, J.A. Moulijn, Gas-liquid mass transfer in benchscale stirred tanks-Fluid properties and critical impeller speed for gas induction, Ind. Eng. Chem. Res. 45(2006) 4574-4581. [34] E. Dietrich, C. Mathieu, H. Delmas, J. Jenck, Raney-nickel catalyzed hydrogenations:Gas-liquid mass transfer in gas-induced stirred slurry reactors, Chem. Eng. Sci. 47(1992) 3597-3604. [35] A. Sharma, C. Julcour, A.A. Kelkar, R.M. Deshpande, H. Delmas, Mass transfer and solubility of CO and H2 in ionic liquid. Case of [BMIM][PF6] with gasinducing stirrer reactor, Ind. Eng. Chem. Res. 48(2009) 4075-4082. [36] M. Teramoto, S. Tai, K. Nishii, H. Teranishi, Effects of pressure on liquid-phase mass transfer coefficients, Chem. Eng. J. 8(1974) 223-226. [37] M. Gonzalezmiquel, J. Palomar, S. Omar, F. Rodriguez, CO2/N2 selectivity prediction in supported ionic liquid membranes (SILMs) by COSMO-RS, Ind. Eng. Chem. Res. 50(2011) 5739-5748. [38] Y. Shimoyama, A. Ito, Predictions of cation and anion effects on solubilities, selectivities and permeabilities for CO2 in ionic liquid using COSMO based activity coefficient model, Fluid Phase Equilib. 297(2010) 178-182. [39] Y.S. Kim, W.Y. Choi, J.H. Jang, K.P. Yoo, C.S. Lee, Solubility measurement and prediction of carbon dioxide in ionic liquids, Fluid Phase Equilib. 228-229(2005) 439-445. [40] T. Banerje, A. Khanna, Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids:Measurements and COSMO-RS prediction, J. Chem. Eng. Data 51(2006) 2170-2177. [41] J. Han, C. Dai, G. Yu, Z. Lei, Parameterization of COSMO-RS model for ionic liquids, Green Energy Environ. 3(2018) 247-265. [42] T. Gerlach, T. Ingram, G. Sieder, I. Smirnova, Modeling the solubility of CO2 in aqueous methyl diethanolamine solutions with an electrolyte model based on COSMORS, Fluid Phase Equilib. 461(2018) 39-50. [43] H. Jiang, B. Diao, D. Xu, L. Zhang, Y. Ma, J. Gao, Y. Wang, Deep eutectic solvents effect on vapor-liquid phase equilibrium for separation of allyl alcohol from its aqueous solution, J. Mol. Liq. 279(2019) 524-529. [44] J. Gao, D. Xu, X. Cha, Z. Cui, L. Zhang, Y. Wang, Multiscale modeling and liquid-liquid equilibria insights for the extraction of heterocyclic nitrogen compounds from coal tar via[emim] [TOS] as extractant, J. Mol. Liq. 277(2019) 825-832. [45] X. Liu, D. Xu, B. Diao, L. Zhang, J. Gao, D. Liu, Y. Wang, Choline chloride based deep eutectic solvents selection and liquid-liquid equilibrium for separation of dimethyl carbonate and ethanol, J. Mol. Liq. 275(2019) 347-353. [46] Y. Ma, J. Gao, Y. Wang, J. Hu, P. Cui, Ionic liquid-based CO2 capture in power plants for low carbon emissions, Int. J. Greenhouse Gas Control 75(2018) 134-139. [47] Y. Zhou, D. Xu, L. Zhang, Y. Ma, X. Ma, J. Gao, Y. Wang, Separation of thioglycolic acid from its aqueous solution by ionic liquids:Ionic liquids selection by the COSMO-SAC model and liquid-liquid phase equilibrium, J. Chem. Thermodyn. 118(2018) 263-273. [48] G. Wen, W. Bai, F. Zheng, J.A. Reyes-Labarta, Y. Ma, Y. Wang, J. Gao, Ternary liquid-liquid equilibrium of an azeotropic mixture (hexane + methanol) with different imidazolium-based ionic liquids at T=298.15 K and 101.325 kPa, Fluid Phase Equilib. 461(2018) 51-56. [49] K. Zhang, D. Xu, Y. Zhou, P. Shi, J. Gao, Y. Wang, Isobaric vapor-liquid phase equilibrium measurements, correlation, and prediction for separation of the mixtures of cyclohexanone and alcohols, J. Chem. Eng. Data 63(2018) 2038-2045. [50] G. Wen, X. Geng, W. Bai, Y. Wang, J. Gao, Ternary liquid-liquid equilibria for systems containing (dimethyl carbonate or methyl acetate + methanol +1-methylmidazole hydrogen sulfate) at 298.15 K and 318.15 K, J. Chem. Thermodyn. 121(2018) 49-54. [51] P. Wang, D. Xu, P. Yan, J. Gao, L. Zhang, Y. Wang, Separation of azeotrope (ethanol and ethyl methyl carbonate) by different imidazolium-based ionic liquids:Ionic liquids interaction analysis and phase equilibrium measurements, J. Mol. Liq. 261(2018) 89-95. [52] P.G.T. Fogg, W. Gerrard, Solubility of Gases in Liquids:A Critical Evaluation of Gas/Liquid Systems in Theory and Practice, Wiley, New York, 1991. |