Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (2): 403-413.DOI: 10.1016/j.cjche.2019.05.002
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
E. Amani, A. Daneshgar, A. Hemmatzade
Received:
2019-02-11
Revised:
2019-04-22
Online:
2020-05-21
Published:
2020-02-28
Contact:
E. Amani, A. Daneshgar, A. Hemmatzade
E. Amani, A. Daneshgar, A. Hemmatzade
通讯作者:
E. Amani, A. Daneshgar, A. Hemmatzade
E. Amani, A. Daneshgar, A. Hemmatzade. A novel combined baffle-cavity micro-combustor configuration for Micro-Thermo-Photo-Voltaic applications[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 403-413.
E. Amani, A. Daneshgar, A. Hemmatzade. A novel combined baffle-cavity micro-combustor configuration for Micro-Thermo-Photo-Voltaic applications[J]. 中国化学工程学报, 2020, 28(2): 403-413.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.05.002
[1] A. Rahman, J. Chin, F. Kabir, Y.M. Hung, Characterization and thrust measurements from electrolytic decomposition of ammonium dinitramide (ADN) based liquid monopropellant FLP-103 in MEMS thrusters, Chin. J. Chem. Eng. 26(2018) 1992-2002. [2] X. Wang, G. Xu, Q. Wang, C. Lu, C. Zong, J. Zhang, L. Yue, G. Cui, A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries, Chin. J. Chem. Eng. 26(2018) 1292-1299. [3] W. Zhang, Y. Zhang, Z. Yang, G. Chen, G. Ma, Q. Wang, In-situ design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances:A brief review, Chin. J. Chem. Eng. 24(2016) 48-52. [4] A. Epstein, S. Senturia, Macro power from micro machinery, SCIENCE-NEW YORK THEN WASHINGTON (1997) 1211. [5] Y. Ju, K. Maruta, Microscale combustion:technology development and fundamental research, Prog. Energy Combust. Sci. 37(2011) 669-715. [6] Y. Tsuboi, T. Yokomori, K. Maruta, Lower limit of weak flame in a heated channel, Proc. Combust. Inst. 32(2009) 3075-3081. [7] A. Di Stazio, C. Chauveau, G. Dayma, P. Dagaut, Oscillating flames in microcombustion, Combust. Flame 167(2016) 392-394. [8] M.A. Bucci, J.-C. Robinet, S. Chibbaro, Global stability analysis of 3D microcombustion model, Combust. Flame 167(2016) 132-148. [9] K. Maruta, J. Parc, K. Oh, T. Fujimori, S. Minaev, R. Fursenko, Characteristics of microscale combustion in a narrow heated channel, Combustion, Explosion and Shock Waves 40(2004) 516-523. [10] J. Wan, H. Zhao, Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels, Energy 139(2017) 366-379. [11] H. Wang, C. Wei, P. Zhao, T. Ye, Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion, Energy 72(2014) 195-200. [12] J. Li, Y. Wang, J. Shi, X. Liu, Dynamic behaviors of premixed hydrogen-air flames in a planar micro-combustor filled with porous medium, Fuel 145(2015) 70-78. [13] S. Bani, J. Pan, A. Tang, Q. Lu, Y. Zhang, Micro combustion in a porous media for thermophotovoltaic power generation, Appl. Therm. Eng. 129(2018) 596-605. [14] V. Giovannoni, R.N. Sharma, R.R. Raine, Premixed combustion of methane-air mixture stabilized over porous medium:A 2D numerical study, Chem. Eng. Sci. 152(2016) 591-605. [15] D.G. Norton, D.G. Vlachos, Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners, Proc. Combust. Inst. 30(2005) 2473-2480. [16] J. Chen, L. Yan, W. Song, D. Xu, Kinetic interplay between hydrogen and carbon monoxide in syngas-fueled catalytic micro-combustors, Int. J. Hydrog. Energy 42(2017) 12681-12695. [17] Q. Lu, J. Pan, W. Yang, A. Tang, S. Bani, X. Shao, Interaction between heterogeneous and homogeneous reaction of premixed hydrogen-air mixture in a planar catalytic micro-combustor, Int. J. Hydrog. Energy 42(2017) 5390-5399. [18] J. Pan, R. Zhang, Q. Lu, Z. Zha, S. Bani, Experimental study on premixed methane-air catalytic combustion in rectangular micro channel, Appl. Therm. Eng. 117(2017) 1-7. [19] W. Yang, A. Fan, H. Yao, W. Liu, Effect of reduced pressures on the combustion efficiency of lean H2/air flames in a micro cavity-combustor, Int. J. Hydrog. Energy 41(2016) 15354-15361. [20] Y. Liu, A. Fan, H. Yao, W. Liu, A numerical investigation on the effect of wall thermal conductivity on flame stability and combustion efficiency in a mesoscale channel filled with fibrous porous medium, Appl. Therm. Eng. 101(2016) 239-246. [21] A. Fan, J. Wan, K. Maruta, H. Yao, W. Liu, Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body, Int. J. Heat Mass Transf. 66(2013) 72-79. [22] A. Tang, Y. Xu, C. Shan, J. Pan, Y. Liu, A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor, Int. J. Hydrog. Energy 40(2015) 16587-16596. [23] A. Tang, Y. Xu, J. Pan, W. Yang, D. Jiang, Q. Lu, Combustion characteristics and performance evaluation of premixed methane/air with hydrogen addition in a microplanar combustor, Chem. Eng. Sci. 131(2015) 235-242. [24] A. Tang, J. Deng, T. Cai, Y. Xu, J. Pan, Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights, Appl. Energy 203(2017) 635-642. [25] E. Amani, P. Alizadeh, R.S. Moghadam, Micro-combustor performance enhancement by hydrogen addition in a combined baffle-bluff configuration, Int. J. Hydrog. Energy 43(16) (2018) 8127-8138. [26] A. Tang, J. Pan, W. Yang, Y. Xu, Z. Hou, Numerical study of premixed hydrogen/air combustion in a micro planar combustor with parallel separating plates, Int. J. Hydrog. Energy 40(2015) 2396-2403. [27] Y. Yan, W. Pan, L. Zhang, W. Tang, Y. Chen, L. Li, Numerical study of the geometrical parameters on CH 4/air premixed combustion in heat recirculation microcombustor, Fuel 159(2015) 45-51. [28] A. Tang, T. Cai, J. Deng, Y. Xu, J. Pan, Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor, Energy Convers. Manag. 152(2017) 65-71. [29] A. Fan, J. Wan, Y. Liu, B. Pi, H. Yao, W. Liu, Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor, Appl. Therm. Eng. 62(2014) 13-19. [30] J. Niu, J. Ran, L. Li, X. Du, R. Wang, M. Ran, Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel, Appl. Therm. Eng. 95(2016) 454-461. [31] G. Bagheri, S.E. Hosseini, M.A. Wahid, Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture, Appl. Therm. Eng. 67(2014) 266-272. [32] M. Ansari, E. Amani, Micro-combustor performance enhancement using a novel combined baffle-bluff configuration, Chem. Eng. Sci. 175(2018) 243-256. [33] J. Wan, A. Fan, H. Yao, W. Liu, A non-monotonic variation of blow-off limit of premixed CH4/air flames in mesoscale cavity-combustors with different thermal conductivities, Fuel 159(2015) 1-6. [34] W. Yang, Y. Xiang, A. Fan, H. Yao, Effect of the cavity depth on the combustion efficiency of lean H2/air flames in a micro combustor with dual cavities, Int. J. Hydrog. Energy 42(2017) 14312-14320. [35] Q. Peng, J.Q. E, Z. Zhang, W. Hu, X. Zhao, Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor, Appl. Therm. Eng. 130(2018) 541-551. [36] J. E, Q. Peng, X. Zhao, W. Zuo, Z. Zhang, M. Pham, Numerical investigation on the combustion characteristics of non-premixed hydrogen-air in a novel microcombustor, Appl. Therm. Eng. 110(2017) 665-677. [37] W. Yang, L. Li, A. Fan, H. Yao, Effect of oxygen enrichment on combustion efficiency of lean H2/N2/O2 flames in a micro cavity-combustor, Chemical Engineering and Processing-Process Intensification 127(2018) 50-57. [38] A. Fan, L. Li, W. Yang, Z. Yuan, Comparison of combustion efficiency between micro combustors with single-and double-layered walls:A numerical study, Chemical Engineering and Processing-Process Intensification 137(2019) 39-47. [39] Q. Peng, Y. Wu, J.Q. E, W. Yang, H. Xu, Z. Li, combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube, Appl. Energy 242(2019) 424-438. [40] Q. Peng, J.Q. E, W. Yang, H. Xu, J. Chen, F. Zhang, T. Meng, R. Qiu, Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses, Energy 173(2019) 540-547. [41] W. Zuo, J.Q. E, H. Liu, Q. Peng, X. Zhao, Z. Zhang, Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer, Appl. Energy 184(2016) 77-87. [42] J. Pan, J. Zhu, Q. Liu, Y. Zhu, A. Tang, Q. Lu, Effect of micro-pin-fin arrays on the heat transfer and combustion characteristics in the micro-combustor, Int. J. Hydrog. Energy 42(2017) 23207-23217. [43] W. Zuo, J.Q. E, W. Hu, Y. Jin, D. Han, Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor, Energy 126(2017) 1-12. [44] W. Zuo, J.Q. E, Q. Peng, X. Zhao, Z. Zhang, Numerical investigations on thermal performance of a micro-cylindrical combustor with gradually reduced wall thickness, Appl. Therm. Eng. 113(2017) 1011-1020. [45] W. Zuo, J.Q. E, Q. Peng, X. Zhao, Z. Zhang, Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for microthermophotovoltaic system, Energy 122(2017) 408-419. [46] A. Alipoor, M.H. Saidi, Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator, Appl. Energy 199(2017) 382-399. [47] S. Akhtar, M.N. Khan, J.C. Kurnia, T. Shamim, Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications, Appl. Energy 192(2017) 134-145. [48] A. Fan, H. Zhang, J. Wan, Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body, Energy 123(2017) 252-259. [49] W. Zuo, J.Q. E, R. Lin, Numerical investigations on an improved counterflow doublechannel micro combustor fueled with hydrogen for enhancing thermal performance, Energy Convers. Manag. 159(2018) 163-174. [50] C.-H. Kuo, P. Ronney, Numerical modeling of non-adiabatic heat-recirculating combustors, Proc. Combust. Inst. 31(2007) 3277-3284. [51] K. Bahlouli, U. Atikol, R.K. Saray, V. Mohammadi, A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine, Energy Convers. Manag. 79(2014) 85-96. [52] G. WC Jr, Gas-phase Combustion Chemistry, Springer Science & Business Media1999. [53] P.C. Malte, D. Pratt, Measurement of atomic oxygen and nitrogen oxides in jetstirred combustion, Symposium (international) on combustion, Elsevier, 1975, pp. 1061-1070. [54] C. Bowman, Chemistry of Gaseous Pollutant Formation and Destruction, John Wiley & Sons, New York, 1991. [55] R. Taylor, R. Krishna, Multicomponent mass transfer, John Wiley & Sons1993. [56] K. Kuo Kenneth, Principles of Combustion, John Wiley & Sons, Inc, Hoboken, New Jersey, 2005. [57] M.F. Modest, Radiative Heat Transfer, Academic press 2013. [58] M. Torkzadeh, F. Bolourchifard, E. Amani, An investigation of air-swirl design criteria for gas turbine combustors through a multi-objective CFD optimization, Fuel 186(2016) 734-749. [59] A. Farokhipour, E. Hamidpour, E. Amani, A numerical study of NOx reduction by water spray injection in gas turbine combustion chambers, Fuel 212(2018) 173-186. [60] M. Jafari, M. Parhizkar, E. Amani, H. Naderan, Inclusion of entropy generation minimization in multi-objective CFD optimization of diesel engines, Energy 114(2016) 526-541. [61] H. Arjmandi, E. Amani, A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber, Energy 81(2015) 706-718. [62] V. Rajabi, E. Amani, A computational study of swirl number effects on entropy generation in gas turbine combustors, Heat Transfer Engineering 40(2019) 346-361. [63] C. Hirsch, Numerical computation of internal and external flows:The fundamentals of computational fluid dynamics, Elsevier2007. |
[1] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[5] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[6] | Pengcheng Zou, Kai Wang. Methanolysis of amides under high-temperature and high-pressure conditions with a continuous tubular reactor [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 170-178. |
[7] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[8] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[9] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[10] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[11] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[12] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[13] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[14] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[15] | Yilin Song, Yize Zhang, Hao Zhou. Experimental study on the desulfurization and evaporation characteristics of Ca(OH)2 droplets [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 127-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||