[1] M. Fattahi, M. Kazemeini, F. Khorasheh, A. Darvishi, A.M. Rashidi, Fixed-bed multitubular reactors for oxidative dehydrogenation in ethylene process, Chem. Eng. Technol. 36(10) (2013) 1691-1700. [2] H. Asadi-Saghandi, J. Karimi-Sabet, Performance evaluation of a novel reactor configuration for oxidative dehydrogenation of ethane to ethylene, Korean J. Chem. Eng. 34(7) (2017) 1905-1913. [3] V.A. Bolotov, V.V. Chesnokov, Y.Y. Tanashev, V.N. Parmon, The oxidative dehydrogenation of ethane:convectional vs microwave heating of Ba-containing catalysts, Chem. Eng. Process. 129(2018) 103-108. [4] A.S. Bodke, D. Henning, L.D. Schmidt, S.S. Bharadwaj, J.J. Maj, J. Siddall, Oxidative dehydrogenation of ethane at millisecond contact times:effect of H2 addition, J. Catal. 191(1) (2000) 62-74. [5] A. Darvishi, A. Bakhtyari, M.R. Rahimpour, A sensitivity analysis and multi-objective optimization to enhance ethylene production by oxidative dehydrogenation of ethane in a membrane-assisted reactor, Chin. J. Chem. Eng. 26(9) (2018) 1879-1895. [6] G. Che-Galicia, R.S. Ruiz-Martinez, F. Lopez-Isunza, C.O. Castillo-Araiza, Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in an industrial-scale packed bed catalytic reactor, Chem. Eng. J. 280(2015) 682-694. [7] J.A. Santander, D.E. Boldrini, M.N. Pedernera, G.M. Tonetto, NiNbO catalyst deposited on anodized aluminum monoliths for the oxidative dehydrogenation of ethane, Can. J. Chem. Eng. 95(8) (2017) 1554-1561. [8] P.B. Radstake, M. Ronning, A. Holmen, Catal. Lett. Influence of H2 on the oxygenassisted dehydrogenation of ethane over Al2O3-supported Pt-Sn catalysts, Catal. Lett. 148(4) (2018) 1055-1066. [9] G. Aparicio-Mauricio, R.S. Ruiz, F. Lopez-Isunza, C.O. Castillo-Araiza, A simple approach to describe hydrodynamics and its effect on heat and mass transport in an industrial wall-cooled fixed bed catalytic reactor:ODH of ethane on a Movnbteo formulation, Chem. Eng. J. 321(2017) 584-599. [10] E. Morales, J.H. Lunsford, Oxidative dehydrogenation of ethane over a lithiumpromoted magnesium oxide catalyst, J. Catal. 118(1) (1989) 255-265. [11] B. Partopour, A.G. Dixon, N-butane partial oxidation in a fixed bed:a resolved particle computational fluid dynamics simulation, Can. J. Chem. Eng. 96(9) (2018) 1946-1956. [12] D. Safronov, M. Kestel, P. Nikrityuk, B. Meyer, Particle resolved simulations of carbon oxidation in a laminar flow, Can. J. Chem. Eng. 92(10) (2014) 1669-1686. [13] G.D. Wehinger, T. Eppinger, M. Kraume, Detailed numerical simulations of catalytic fixed-bed reactors:heterogeneous dry reforming of methane, Chem. Eng. Sci. 122(2015) 197-209. [14] T. Eppinger, K. Seidler, M. Kraume, DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios, Chem. Eng. J. 166(1) (2011) 324-331. [15] D.K. Zerkle, M.D. Allendorf, M. Wolf, O. Deutschmann, Understanding homogeneous and heterogeneous contributions to the platinum-catalyzed partial oxidation of ethane in a short-contact-time reactor, J. Catal. 196(1) (2000) 18-39. [16] M. Cheng, X. Wang, Y. Chen, Z. Liu, Preparation of egg-shelled Pt/gamma-Al2O3 catalysts and their activity in catalytic combustion of benzene, petrochemical, Technology 45(11) (2016) 1341-1346. [17] P.M. Witt, L.D. Schmidt, Effect of flow rate on partial oxidation of methane and ethane, J. Catal. 163(2) (1996) 465-475. [18] A.S. Bodke, D.A. Olschki, L.D. Schmidt, E. Ranzi, High selectivities to ethylene by partial oxidation of ethane, Science 285(5428) (1999) 712-715. [19] R. Gudgila, C.A. Leclerc, Support effects on the oxidative dehydrogenation of ethane to ethylene over platinum catalysts, Ind. Eng. Chem. Res. 50(14) (2011) 8438-8443. [20] J. Yao, Z.P. Zhong, L. Zhu, Porous medium model in computational fluid dynamics simulation of a honeycombed Scr denox catalyst, Chem. Eng. Technol. 38(2) (2015) 283-290. [21] STAR-CCM+12.02. CD-adapco, Munich, www.cd-adapco.com2017. [22] O. Deutschmann, Computational Fluid Dynamics Simulation of Catalytic Reactors, Wiley-VCH Verlag GmbH & Co, KGaA, 2008. [23] R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically reacting flow, Theory and Practice, John Wiley & Sons, New Jersey (2005). [24] O. Deutschmann, "DETCHEM", detailed chemistry in CFD, accessed on December 4, 2018 www.detchem.com2018. [25] N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi, S.M. Senkan, Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames, Combust. Sci. Technol. 116(2012) 211-287. [26] A.S. Bodke, S.S. Bharadwaj, L.D. Schmidt, The effect of ceramic supports on partial oxidation of hydrocarbons over noble metal coated monoliths, J. Catal. 179(1) (1998) 138-149. [27] F. Donsi, K.A. Williams, L.D. Schmidt, A multistep surface mechanism for ethane oxidative dehydrogenation on Pt- and Pt/Sn-coated monoliths, Ind. Eng. Chem. Res. 44(10) (2005) 3453-3470. [28] Y. Dong, O. Korup, J. Gerdts, B.R. Cuenya, R. Horn, Microtomography-based Cfd modeling of a fixed-bed reactor with an open-cell foam monolith and experimental verification by reactor profile measurements, Chem. Eng. J. 353(2018) 176-188. [29] R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann, Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith, Chem. Eng. Sci. 58(3-6) (2003) 633-642. [30] D.W. Flick, M.C. Huff, Oxidative dehydrogenation of ethane over a Pt-coated monolith versus Pt-loaded pellets:surface area and thermal effects, J. Catal. 178(1) (1998) 315-327. [31] W. Boll, S. Tischer, O. Deutschmann, Loading and aging effects in exhaust gas aftertreatment catalysts with Pt as active component, Ind. Eng. Chem. Res. 49(21) (2010) 10303-10310. [32] M. Haneda, T. Watanabe, N. Kamiuchi, M. Ozawa, Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene, Appl. Catal. B 142(2013) 8-14. [33] X. Auvray, A. Thuault, Effect of microwave drying, calcination and aging of Pt/Al2O3 on platinum dispersion, Catalysts 8(9) (2018) 348-355. |