[1] P. Ibarra-Gonzalez, B. Rong, A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chin. J. Chem. Eng. 27(2019) 1523-1535. [2] S. Guo, Q. Liu, J. Sun, H. Jin, A review on the utilization of hybrid renewable energy, Renew. Sust. Energ. Rev. 91(2018) 1121-1147. [3] A. Bauen, G. Berndes, M. Junginger, M. Londo, F. Vuille, Bioenergy-A Sustainable and Reliable Energy Source-a Review of Status and Prospects, IEA Bioenergy 6, 2009. [4] Z.U. Din, Z.A. Zainal, Biomass integrated gasification-SOFC systems:Technology overview, Renew. Sust. Energ. Rev. 53(2016) 1356-1376. [5] A.V. Bridgwater, The technical and economic feasibility of biomass gasification for power generation, Fuel 74(1995) 631-653. [6] K. Im-orb, W. Wiyaratn, A. Arpornwichanop, Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion, Energy 153(2018) 592-603. [7] Z. Yao, S. You, T. Ge, C. Wang, Biomass gasification for syngas and biochar coproduction:Energy application and economic evaluation, Appl. Energy 209(2017) 43-55. [8] A. Molino, S. Chianese, D. Musmarra, Biomass gasification technology:The state of the art overview, J.Energy Chem. 25(2016) 10-25. [9] C. Liao, C. Wu, Y. Yan, The characteristics of inorganic elements in ashes from a 1 MW CFB biomass gasification power generation plant, Fuel Process. Technol. 88(2007) 149-156. [10] M. Geis, S. Herrmann, S. Fendt, H. Jeong, C. Lenser, N.H. Menzler, H. Spliethoff, Coupling SOFCs to biomass gasification-The influence of phenol on cell degradation in simulated bio-syngas. Part I:Electrochemical analysis, Int. J. Hydrog. Energy 43(2018) 20417-20427. [11] L. Yan, B. He, On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier, Bioresour. Technol. 235(2017) 113-121. [12] D. Lu, K. Yoshikawa, M. Fukuhara, Y. Kowata, S. Nakamura, X. Dai, M. Li, Development of an ultra-small biomass gasification and power generation system:Part 2. Gasification characteristics of carbonized pellets/briquettes in a pilot-scale updraft fixed bed gasifier, Fuel 220(2018) 210-219. [13] G. Leonzio, An innovative trigeneration system using biogas as renewable energy, Chin. J. Chem. Eng. 26(2018) 1179-1191. [14] F. Jabari, B. Mohammadi-ivatloo, H. Ghaebi, M. Bannae-sharifian, Biogas fueled combined cooling, desalinated water and power generation systems, J. Clean. Prod. 219(2019) 906-924. [15] S. Hosseini, M. Wahid, Development of biogas combustion in combined heat and power generation, Renew. Sust. Energ. Rev. 40(2014) 868-875. [16] W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with nickelbased anodes operating on methane and related fuels, Chem. Rev. 113(2013) 8104-8151. [17] A. Wei, D. Gatewood, B. Dunlap, C. Turner, Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory, J. Power Sources 196(2011) 4724-4728. [18] D. Chen, B. Hu, K. Ding, C. Yan, L. Lu, The geometry effect of cathode/anode areas ratio on electrochemical performance of button fuel cell using mixed conducting materials, Energies 11(2018) 1875. [19] Z. Shao, S. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature 35(2010) 170-173. [20] K. Zhao, Y. Du, Calcium-doped ceria materials for anode of solid oxide fuel cells running on methane fuel, J. Power Sources 347(2017) 79-85. [21] W. He, J. Fan, H. Zhang, M. Chen, Z. Sun, M. Ni, Zr doped BaFeO3-δ as a robust electrode for symmetrical solid oxide fuel cells, Int. J. Hydrog. Energy 44(2019) 32164-32169. [22] C. Su, W. Wang, R. Ran, T. Zheng, Z. Shao, Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst, Int. J. Hydrog. Energy 37(2012) 6844-6852. [23] Q. Sun, K. Zheng, M. Ni, Thermodynamic analysis of methane-fueled solid oxide fuel cells considering CO electrochemical oxidation, Chin. J. Chem. Eng. 22(2014) 1033-1037. [24] Y. Jiao, W. Tian, H. Chen, H. Shi, B. Yang, C. Li, Z. Shao, Z. Zhu, S. Li, In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance, Appl. Energy 141(2015) 200-208. [25] C. Su, W. Wang, R. Ran, Z. Shao, M. Tade, S. Liu, Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation, J. Mater. Chem. A 1(2013) 5620-5627. [26] Y. Chen, C. Su, T. Zheng, Z. Shao, Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures, J. Power Sources 220(2012) 147-152. [27] E. Bocci, A. Carlo, S. Mcphail, K. Gallucci, P. Foscolo, M. Moneti, M. Villarini, M. Carlini, Biomass to fuel cells state of the art:A review of the most innovative technology solutions, Int. J. Hydrog. Energy 39(2014) 21876-21895. [28] F.P. Nagel, S. Ghosh, C. Pitta, T.J. Schildhauer, S. Biollaz, Biomass integrated gasification fuel cell systems-Concept development and experimental results, Biomass Bioenergy 35(2011) 354-362. [29] A. Baldinelli, G. Cinti, U. Desideri, F. Fantozzi, Biomass integrated gasifier-fuel cells:experimental investigation on wood syngas tars impact on NiYSZ-anode solid oxide fuel cells, Energy Convers. Manag. 128(2016) 361-370. [30] A. Norheim, D. Lindberg, J.E. Hustad, R. Backman, Equilibrium calculations of the composition of trace compounds from biomass gasification in the solid oxide fuel cell operating temperature interval, Energy Fuel 23(2016) 920-925. [31] G. Campitelli, S. Cordiner, M. Gautam, A. Mariani, V. Mulone, Biomass fueling of a SOFC by integrated gasifier:Study of the effect of operating conditions on system performance, Int. J. Hydrog. Energy 38(2013) 320-327. [32] M. Minutillo, A. Perna, E. Jannelli, V. Cigolotti, S.W. Nam, S.P. Yoon, B.W. Kwon, Coupling of biomass gasification and SOFC-Gas turbine hybrid system for small scale cogeneration applications, Energy Procedia 105(2017) 730-737. [33] H. Shi, C. Su, G. Yang, R. Ran, Y. Hao, M.O. Tade, Z. Shao, Fabrication and operation of flow-through tubular SOFCs for electric power and synthesis gas cogeneration from methane, AIChE J. 60(2014) 1036-1044. [34] K. Chen, L. Zhang, N. Ai, S. Zhang, Y. Song, Y. Song, Q. Yi, C.Z. Li, S.P. Jiang, Feasibility of direct utilization of biomass gasification product gas fuels in tubular solid oxide fuel cells for on-site electricity generation, Energy Fuels 30(2016) 1849-1857. [35] R.Ø. Gadsbøll, J. Thomsen, C. Bang-Møller, J. Ahrenfeldt, U.B. Henriksen, Solid oxide fuel cells powered by biomass gasification for high efficiency power generation, Energy 131(2017) 198-206. [36] D. Yan, C. Zhang, L. Liang, K. Li, L. Jia, J. Pu, J. Li, X. Li, T. Zhang, Degradation analysis and durability improvement for SOFC 1-cell stack, Appl. Energy 175(2016) 414-420. [37] J.C. Ruiz-Morales, J. Peña-Martínez, J. Canales-Vázquez, D. Marrero-López, C. Savaniu, P. Núñez, Cost-effective microstructural engineering of solid oxide fuel cell components for planar and tubular designs, J. Am. Ceram. Soc. 92(2010) 276-279. [38] C. Su, R. Ran, W. Wang, Z. Shao, Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel, J. Power Sources 196(2011) 1967-1974. [39] J. Liang, X. Xu, Z. Yu, L. Chen, Y. Liao, X. Ma, Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust, Bioresour. Technol. 293(2019) 122080. [40] Y. Awad, Y. Ok, J. Abrigata, J. Beiyuan, F. Beckers, D. Tsang, J. Rinklebe, Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes, Sci. Total Environ. 625(2018) 147-154. [41] Z. Ming, Y. Liu, Y. Ye, S. Li, Y. Zhao, D. Wang, Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust, Energy 116(2016) 558-566. [42] N.H. Jalani, M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R. Staudt, R. Datta, Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells, J. Power Sources 160(2006) 1096-1103. |