Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (6): 1483-1491.DOI: 10.1016/j.cjche.2020.02.030
• Reviews • Next Articles
Sedigheh Sadegh Hassani1, Maryam Daraee2, Zahra Sobat1
Received:
2018-12-27
Revised:
2019-12-30
Online:
2020-07-29
Published:
2020-06-28
Contact:
Maryam Daraee
Sedigheh Sadegh Hassani1, Maryam Daraee2, Zahra Sobat1
通讯作者:
Maryam Daraee
Sedigheh Sadegh Hassani, Maryam Daraee, Zahra Sobat. Advanced development in upstream of petroleum industry using nanotechnology[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1483-1491.
Sedigheh Sadegh Hassani, Maryam Daraee, Zahra Sobat. Advanced development in upstream of petroleum industry using nanotechnology[J]. 中国化学工程学报, 2020, 28(6): 1483-1491.
[1] M. Khalil, B.M. Jan, C.W. Tong, M.A. Berawi, Advanced nanomaterials in oil and gas industry:Design, application and challenges, J. Applied Energy 191(2017) 287-310. [2] R. Kumar, A. Gupta, S.R. Dhakate, Nanoparticles-decorated coal tar pitch-based carbon foam with enhanced electromagnetic radiation absorption capability, J. RSC. Adv 5(2015) 20256-20264. [3] S. Xu, A.H. Habib, A.D. Pickel, M.E. McHenry, Magnetic nanoparticle-based solder composites for electronic packaging applications, J. Prog. Mater. Sci 67(2015) 95-160. [4] B.H. Kim, M.J. Hackett, J. Park, T. Hyeon, Synthesis, characterization, and application of ultrasmall nanoparticles, J. Chem. Mater 26(2014) 59-71. [5] A.R. Barron, Nanotechnology for the Oil and Gas Industry, PhD Thesis, Rice University, Houston, Texas, 2008. [6] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, J. Renew. Sustain. Energy. Rev 15(2011) 1646-1668. [7] L. Hendraningrat, S. Li, O. Torsaeter, A core investigation of nanofluid enhanced oil recovery, J. Pet. Sci. Eng. 111(2011) 128-138. [8] A.K. Mittal, Y. Christi, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, J. Biotechnol. Adv 31(2013) 346-356. [9] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, J. Nanomed-Nanotech 6(2010) 257-262. [10] S.K. Maity, J. Ancheyta, G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils:A review, J. Energy Fuel 24(2010) 2809-2816. [11] G. Schmid, Metal Nanoparticles, Synthesis of, Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd., Hoboken, New Jersey, 2006. [12] M.F. Fakoya, S.N. Shah, P. Harshkumar, Nanotechnology:Innovative applications in the oil & gas industry, Int. J. Glo. Adv. Mat 1(1) (2018) 16-30. [13] L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale. Res. Lett 6(300) (2011) 1-8. [14] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, J. Sci. Ind. Res. 73(2014) 87-90. [15] J.S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer, T.P. Davis, A block copolymerstabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents, Polym. Chem. 5(2014) 2611-2620. [16] N. Bayal, P. Jeevanandam, Synthesis of TiO2-MgO mixed metal oxide nanoparticles via sol-gel method and studies on their optical properties, Ceram. Int. 40(2014) 15463-15477. [17] A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, Controlled synthesis of sizetunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions, J. Adv. Nat. Sci:Nanosci. Nanotechnol 4(2013), 025009. [18] Y. Song, X. Li, C. Wei, J. Fu, F. Xu, A green strategy to prepare metal oxide superstructure from metal-organic frameworks, J. Sci. Rep 5(2015) 8401. [19] M. Najafi, A. Abbasi, M. Master-Farahani, J. Janczak, Sonochemical preparation of bimetallic (Cu/Mo) oxide nanoparticles as catalysts for dye degradation under mild conditions, J.Polyhedron 93(2015) 76-83. [20] T.K. Indira, P.K. Laksmi, Magnetic nanoparticles-A review, Int. J. Pharm. Sci. Nanotechnol 3(2010) 1035-1042. [21] H. Soleimani, N. Yahya, M.K. Baig, L. Khodapanah, M. Sabet, Synthesis of carbon nanotubes for oil-wet interfacial tension reduction, J. Oil. Gas. Res 1(2015) 1-5. [22] C. Laurent, E. Flahaut, A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, J. Carbon 48(2010) 2994-2996. [23] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, Methods for carbon nanotubes synthesis-A review, J. Mater. Chem 21(2011) 15872-15884. [24] J.G. Duque, A.N.G. Parra-Vasquez, N. Behabtu, M.J. Green, A.L. Higginbotham, Diameter-dependent solubility of single-walled carbon nanotubes, J. ACS Nano 4(2010) 3063-3072. [25] M. Sadeghalvaad, S. Sabbaghi, The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties, J. Powder Technol. 272(2015) 113-119. [26] L.D. Pachon, G. Rothenberg, Transition-metal nanoparticles:Synthesis, stability and the leaching issue, J. Appl. Organomet. Chem 22(2008) 288-299. [27] M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse, Nanotechnology, Chapman & Hall/CRC, Florida, 2002. [28] C. Oncel, Y. Yurum, Carbon nanotube synthesis via the catalytic CVD method:A review on the effect of reaction parameters, Fullerenes, Nanotubes and Carbon Nanostructures 14(1) (2006) 17-37. [29] A. Shashurin, M. Keidar, Synthesis of 2D materials in arc plasmas, J. Phys. D. Appl. Phys. 48(31) (2015), 314007. [30] A.B. Moghaddam, T. Nazari, J. Badraghi, M. Kazemzad, Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite, film, Int. J. Electrochem. Sci. 4(2009) 247-257. [31] L.L. Hench, J.K. West, The sol-gel process, J. Chemical reviews 90(1) (1990) 33-72. [32] S. Petrovic, L. Rozic, V. Jovic, S. Stojadinovic, B. Grbić, N. Radić, J. Lamovec, R. Vasilić, Optimization of a nanoparticle ball milling process parameters using the response surface method, J. Adv. Pow. Tech 29(9) (2018) 2129-2139. [33] L. He, J. Xu, D. Bin, Application of nanotechnology in petroleum exploration and development, J. Petrol. Explor. Develop 43(6) (2016) 1107-1115. [34] P. Swaminathan, R. Nagarajan, S. Jitendra, Applications of nanotechnology for upstream oil and gas industry, J. Nano. Research 24(2013) 7-15. [35] S. Sainson, Electromagnetic Seabed Logging, A New Tool for Geoscientists, Ed. Springer, eBook ISBN 978-3-319-45355-2, 2017. [36] R.K. Pandey, S. Krishna, J. Rana, N.K. Hazarika, Emerging applications of nanotechnology in oil and gas industry, International Journal For Technological Research In Engineering 3(2016) 2347-4718. [37] R. Krishnamoorti, Extracting the benefits of nanotechnology for the oil industry, J. petro. Tech 58(11) (2006) 24-26. [38] M.N. Agista, K. Guo, Zh. Yu, A state-of-the-art, review of nanoparticles application in petroleum with a focus on enhanced oil recovery, J. Appl. Sci 8(2018) 871. [39] S. Ryoo, A.R. Rahmani, K.Y. Yoon, M. Prodanovic, C. Kotsmar, Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles, J. Pet. Sci. Eng 81(2012) 129-144. [40] M.S. Zaman, M.R. Islam, S. Mokhatab, Nanotechnology prospects in the petroleum industry, J. Petroleum Science and Technology 30(2012) 1053-1058. [41] S. Chakraborty, M. Pal, Highly efficient novel carbon monoxide gas sensor based on bismuth ferrite nanoparticles for environmental monitoring, New J. Chem. 42(2018) 7188-7196. [42] M.F. Fakoya, S.N. Shah, Emergence of nanotechnology in the oil and gas industry:Emphasis on the application of silica nanoparticles, J. Petroleum 3(2017) 391-405. [43] N. Chegenizadeh, A. Saeedi, X. Quan, Application of nanotechnology for enhancing oil recovery:A review, J. Petroleum 2(2016) 324-333. [44] L. Morrow, D.K. Potter, Andrew R. Barron, Detection of magnetic nanoparticles against proppant and shale reservoir rocks, J. Experimental Nanoscience 10(2015) 1028-1041. [45] Y.C. Park, J. Paulsen, R.J. Nap, R.D. Whitaker, V. Mathiyazhagan, Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand, J. ACS 30(3) (2014) 784-792. [46] C. Kotsmar, K.Y. Yoon, H. Yu, S.Y. Ryoo, J. Barth, Stable citrate-coated iron oxide superparamagnetic nanoclusters at high salinity, J. Ind. Eng. Chem. Res 49(2010) 12435-12443. [47] B. Urasinska-Wojcik, T. Vincent, J.W. Gardner, H2S sensing properties of WO3 based gas sensor, J. Procedia Engineering 168(2016) 255-258. [48] M.Z. Atashbar, S. Singamaneni, Room temperature gas sensor based on metallic nanowires, J. Sensor. Actuator. B. Chem 111-112(2005) 13-21. [49] A. Hoel, L.F. Reyes, P. Heszler, V. Lantto, C.G. Granqvist, Nanomaterials for environmental applications:Novel WO3-based gas sensors made by advanced gas deposition, Curr. Appl. Phys. 4(2004) 547-553. [50] E. Rodriguez, R.M. Robert, H. Yu, C. Huh, S.L. Bryant, Enhanced Migration of SurfaceTreated N Nanoparticles in Sedimentary Rocks, Society of Petroleum Engineers, Annual Technical Conference and Exhibition, Orleans, Louisiana, USA, SPE(124418), 2009. [51] M.B. Jacob, J. Yu, W. Lu, E.E. Walsh, L. Zhang, Engineered nanoparticles for hydrocarbon detection in oilfield rocks, J. Int Con Oilfield Chem, Engy Environ. Sci 4(2011) 505-509. [52] S. SadeghHassani, A. Amrollahi, A.M. Rashidi, M. Soleymani, S. Rayatdoost, The effect of nanoparticles on the heat transfer properties of drilling fluids, J. Petroleum Science and Engineering 146(2016) 183-190. [53] D. Domari Ganji, M.M. Peiravi, M. Abbasi, Evaluation of the heat transfer rate increases in retention pools nuclear waste, Int. J. Nano Dimens 6(4) (2015) 385-398. [54] B. Kirubadurai, P. Selvan, V. Vijayakumar, M. Karthik, Heat transfer enhancement of nano-fluid:A review, Int. J. Res. Eng. Technol 3(7) (2014) 483-486. [55] J.K.M. Williama, S. Ponmani, R. Samuel, R. Nagarajanc, J.S. Sangwai, Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids, J. Petro. Sci. Eng 117(2014) 15-27. [56] L.L. Ionscu Vasii, A. Fatseyeu, Electrical conductivity of oil base drilling fluids containing carbon nanotubes, US Pat. 20110111988(2011). [57] M. Sedaghatzadeh, A.A. Khodadadi, M.R. Tahmasebi Birgani, An improvement in thermal and rheological properties of water based drilling fluids using multi wall carbon nanotube (MWCNT), Iran. J. Oil Gas Sci. Technol 1(1) (2012) 55-65. [58] H. Xie, W. Yu, Y. Li, L. Chen, Discussion on the thermal conductivity enhancement of nanofluids, Nanoscale Res. Lett 6(2011) 124. [59] J. Abdo, M.D. Haneef, Clay nano-particles modified drilling fluids for drilling of deep hydrocarbon wells, J. Appl. Clay. Sci 86(2013) 76-82. [60] J. Abdo, M. Haneef, Nano-enhanced drilling fluids:pioneering approach to overcome uncompromising drilling problems, J. Energy. Resour. Technol 134(1) (2012) (014501). [61] R. Saboori, S. Sabbaghi, D. Mowla, A. Soltani, Decreasing of water loss and mud cake thickness by CMC nanoparticles in mud drilling, Int. J. Nano. Dimens. 3(2) (2012) 101-104. [62] J. Nasser, A. Jesil, T. Mohiuddin, M. Al-Ruqeshi, G. Devi, Experimental investigation of drilling fluid performance as nanoparticles, World J. Nano Science and Engineering 3(3) (2013) 57-61. [63] Y.H. Chai, S. Yusup, W. Soon Chok, A review on nanoparticle addition in base fluid for improvement of biodegradable ester-based drilling fluid properties, J. Chem Eng Trans 45(2015) 1447-1452. [64] K.Q. Ma, J. Liu, Nano liquid-metal fluid as ultimate coolant, J. Phys. Lett. A. 361(3) (2007) 252-256. [65] D. Ashtiani, M.A. Akhavan-Behabadi, M. Fakoor Pakdaman, An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition, Int. Commun. Heat Mass. Transf 39(2012) 1404-1409. [66] J.B. Crews, T. Huang, Use of nano-sized phyllosilicate minerals in viscoelastic surfactant fluids, US Pat. 9145510(2011) B2. [67] J.B. Crews, T. Huang, Use of Nano-sized Clay Minerals in Viscoelastic Surfactant Fluids, US Pat. 20080300153(2008) A1. [68] B. Peng, L. Zhang, J. Luo, P. Wang, B. Ding, M. Zeng, Zhengdong. Cheng, A review of nanomaterials for nanofluid enhanced oil recovery, J. RSC. Adv 7(2017) 32246. [69] L. Hendraningrat, O. Torsæter, Metal oxide-based nanoparticles:Revealing their potential to enhance oil recovery in different wettability systems, Appl. Nanosci 5(2) (2015) 181-199. [70] X. Sun, Y. Zhang, G. Chen, Zh. Gai, Application of nanoparticles in enhanced oil recovery:A critical review of recent progress, J. Energies 10(3) (2017) 345. [71] A. Bera, H. Belhaj, Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review, J. Natural Gas Science and Engineering 34(2016) 1284-1309. |
[1] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[2] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[3] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[4] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[5] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[6] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[7] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
[8] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[9] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[10] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[11] | Zheyu Liu, Jian Zhang, Xianjie Li, Chunming Xu, Xin Chen, Bo Zhang, Guang Zhao, Han Zhang, Yiqiang Li. Conformance control by a microgel in a multi-layered heterogeneous reservoir during CO2 enhanced oil recovery process [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 324-334. |
[12] | Chen Gu, Wenqiang Weng, Cong Lu, Peng Tan, Yao Jiang, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 42-48. |
[13] | Yaping Wang, Songyue Cheng, Wendi Fan, Yikun Jiang, Jie Yang, Zaizai Tong, Guohua Jiang. Dual responsive block copolymer coated hollow mesoporous silica nanoparticles for glucose-mediated transcutaneous drug delivery [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 35-42. |
[14] | Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess. Fe3O4-carbon spheres core–shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 75-85. |
[15] | Yiqing Chen, Xin Huang, Suping Ding, Yaoguang Feng, Na Wang, Hongxun Hao. Application of functionalized magnetic silica nanoparticles for selective induction of three coumarin metastable polymorphs [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 155-167. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 482
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||