[1] A. Hussain, A single stage membrane process for CO2 capture from flue gas by a facilitated transport membrane, Sep. Sci. Technol. 47(13) (2012) 1857-1865. [2] D.Q. Sun, B.W. Yi, J.H. Xu, W.Z. Zhao, G.S. Zhang, Y.F. Lu, Assessment of CO2 emission reduction potentials in the Chinese oil and gas extraction industry:From a technical and cost-effective perspective, J. Clean. Prod. 201(2018) 1101-1110. [3] U. Zahid, F.N. Al Rowaili, M.K. Ayodeji, U. Ahmed, Simulation and parametric analysis of CO2 capture from natural gas using diglycolamine, Int. J. Greenh. Gas Con. 57(2017) 42-51. [4] GCCSI, Global Status of CCS:Special Report, Introduction to Industrial Carbon Capture and Storage 2016. [5] A. Muhammad, Y. GadelHak, Simulation based improvement techniques for acid gases sweetening by chemical absorption:A review, Int. J. Greenh. Gas Con. 37(2015) 481-491. [6] D. Aaron, C. Tsouris, Separation of CO2 from flue gas:A review, Sep. Sci. Technol. 40(1-3) (2005) 321-3482005. [7] H. Li, J. Yan, P.E. Campana, Feasibility of integrating solar energy into a power plant with amine-based chemical absorption for CO2 capture, Int. J. Greenh. Gas Con. 9(2012) 272-280. [8] S. Freguia, G.T. Rochelle, Modeling of CO2 capture by aqueous monoethanolamine, AIChE J. 49(7) (2003) 1676-1686. [9] F.A. Tobiesen, H.F. Svendsen, T. Mejdell, Modeling of blast furnace CO2 capture using amine absorbents, Ind. Eng. Chem. Res. 46(23) (2007) 7811-7819. [10] H.M. Kvamsdal, J.P. Jakobsen, K.A. Hoff, Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture, Chem. Eng. Process. 48(1) (2009) 135-144. [11] M.S. Jassim, G.T. Rochelle, Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine, Ind. Eng. Chem. Res. 45(8) (2006) 2465-2472. [12] G. Soave, J.A. Feliu, Saving energy in distillation towers by feed splitting, Appl. Therm. Eng. 22(8) (2002) 889-896. [13] C. Arnaiz del Pozo, S. Cloete, J.H. Cloete, A. Jiménez Álvaro, S. Amini, The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture, Int. J. Greenh. Gas Con. 83(2019) 265-281. [14] J. N.J.N. Knudsen, J. Andersen, J.N. Jensen, O. Biede, Evaluation of process upgrades and novel solvents for the post combustion CO2 capture process in pilot-scale, Energ. Procedia 4(2011) 1558-1565. [15] M. Karimi, M. Hillestad, H.F. Svendsen, Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture, Chem. Eng. Res. Des. 89(8) (2011) 1229-1236. [16] L.M. Romeo, S. Espatolero, I. Bolea, Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing, Int. J. Greenh. Gas Con. 2(4) (2008) 563-570. [17] L. Raynal, P.A. Bouillon, A. Gomez, P. Broutin, From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chem. Eng. J. 171(3) (2011) 742-752. [18] S.Z. Naji, A.A. Abd, Sensitivity analysis of using diethanolamine instead of methyldiethanolamine solution for GASCO'S Habshan acid gases removal plant, Front. Eng. 13(2) (2019) 317-324. [19] K. Li, W. Leigh, P. Feron, H. Yu, M. Tade, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process:Techno-economic assessment of the MEA process and its improvements, Appl. Energ. 165(2016) 648-659. [20] C. Biliyok, A. Lawal, M. Wang, F. Seibert, Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant, Int. J. Greenh. Gas Con. 9(2012) 428-445. [21] A. Lawal, M. Wang, P. Stephenson, G. Koumpouras, H. Yeung, Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants, Fuel 89(10) (2010) 2791-2801. [22] B. Zhao, F. Liu, Z. Cui, C. Liu, H. Yue, S. Tang, B. Liang, Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant:Process improvement, Appl. Energ. 185(2017) 362-375. [23] W. Zhang, H. Liu, Y. Sun, J. Cakstins, C. Sun, C.E. Snape, Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for postcombustion carbon capture, Appl. Energ. 168(2016) 394-405. [24] M. Gupta, E.F. da Silva, A. Hartono, H.F. Svendsen, Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature, J. Physic. Chem. 117(32) (2013) 9457-9468. [25] B.H. Li, N. Zhang, R. Smith, Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution, Appl. Energ. 161(2016) 707-717. [26] A.Y. Ibrahim, F.H. Ashour, A.O. Ghallab, M. Ali, Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine, J. Nat. Gas Sci. Eng. 21(2014) 894-899. [27] H. Svensson, C. Hulteberg, H.T. Karlsson, Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine, Int. J. Greenh. Gas Con. 17(2013) 89-98. [28] S. Bishnoi, G.T. Rochelle, Absorption of carbon dioxide into aqueous piperazine:reaction kinetics, mass transfer and solubility, Chem. Eng. Sci. 55(22) (2000) 5531-5543. [29] K. Li, K. Jiang, T.W. Jones, P.H.M. Feron, R.D. Bennett, A.F. Hollenkamp, CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture, Appl Energ. 247(2019) 417-425. [30] R. Zhang, X. Zhang, Q. Yang, H. Yu, Z. Liang, X. Luo, Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC), Appl. Energ. 205(2017) 1002-1011. [31] X. Zhang, R. Zhang, H. Liu, H. Gao, Z. Liang, Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts, Appl. Energ. 218(2018) 417-429. [32] C. Nwaoha, C. Saiwan, T. Supap, R. Idem, P. Tontiwachwuthikul, W. Rongwong, A. Benamor, Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA), Int. J. Greenh. Gas Con. 53(2016) 292-304, https://doi.org/10.1016/j.ijggc.2016.08.012. [33] D.D.D. Pinto, S.A.H. Zaidy, A. Hartono, H.F. Svendsen, Evaluation of a phase change solvent for CO2 capture:Absorption and desorption tests, Int. J. Greenh. Gas Con. 28(2014) 318-327. [34] L. Raynal, P. Alix, P.A. Bouillon, A. Gomez, M.F. de Nailly, M. Jacquin, J. Trapy, The DMXTM process:An original solution for lowering the cost of post-combustion carbon capture, Energ. Procedia 4(2011) 779-786. [35] J. Zhang, O. Nwani, Y. Tan, D.W. Agar, Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89(8) (2011) 1190-1196. [36] J. Zhang, D.W. Agar, X. Zhang, F. Geuzebroek, CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration, Energ. Procedia 4(2011) 67-74. [37] K. Sobala, H. Kierzkowska-Pawlak, Heat of absorption of CO2 in aqueous N, N-diethylethanolamine + N-methyl-1,3-propanediamine solutions at 313 K, Chin. J. Chem. Eng. 27(3) (2019) 628-633. [38] H. Kim, S.J. Hwang, K.S. Lee, Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process, Environ. Sci. Technol. 49(3) (2015) 1478-1485. [39] I. Kim, H.F. Svendsen, Comparative study of the heats of absorption of post-combustion CO2 absorbents, Int. J. Greenh. Gas Con. 5(3) (2011) 390-395. [40] H. Svensson, V. Zejnullahu Velasco, C. Hulteberg, H.T. Karlsson, Heat of absorption of carbon dioxide in mixtures of 2-amino-2-methyl-1-propanol and organic solvents, Int. J. Greenh. Gas Con. 30(2014) 1-8. [41] K. Merkley, Enthalpies of Solution of CO2 in Aqueous MDEA Solutions. M.S, Brigham Young University, Provo, UT, USA, Thesis, 1987. [42] J.L. Oscarson, H.K. Grimsrud, S.E. Gillespie, Heats of mixing of gaseous CO2/CH4 mixtures with aqueous solutions of methyldiethanolamine and diethanolamine, Thermochim. Acta 351(1-2) (2000) 9-20. [43] C. Mathonat, V. Majer, A.E. Mather, J.P.E. Grolier, Enthalpies of absorption and solubility of CO2 in aqueous solutions of methyldiethanolamine, Fluid Phase Equilibr 140(1-2) (1997) 171-182. [44] H. Kierzkowska-Pawlak, R. Zarzycki, Calorimetric measurements of CO2 absorption into aqueous N-methyldiethanolamine solutions, Chem. Pap. 56(2000) 219. [45] J.K. Carson, K.N. Marsh, A.E. Mather, Enthalpy of solution of carbon dioxide in (water + monoethanolamine, or diethanolamine, or N-methyldiethanolamine) and (water + monoethanolamine + N-methyldiethanolamine) at T=298.15 K, J. Chem. Thermodyn. 32(9) (2000) 1285-1296. [46] H. Arcis, L. Rodier, K. Ballerat-Busserolles, J.Y. Coxam, Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa, J. Chem. Thermodyn. 40(6) (2008) 1022-1029. [47] W. Conway, Q. Yang, S. James, C.C. Wei, M. Bown, P. Feron, G. Puxty, Designer amines for post combustion CO2 capture processes, Energ. Procedia 63(2014) 1827-1834. [48] U.E. Aronu, K.A. Hoff, H.F. Svendsen, CO2 capture solvent selection by combined absorption-desorption analysis, Chem. Eng. Res. Des. 89(8) (2011) 1197-1203. [49] C. Nwaoha, R. Idem, T. Supap, C. Saiwan, P. Tontiwachwuthikul, W. Rongwong, A. Benamor, Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture, Chem. Eng. Sci. 170(2017) 26-35. [50] A. Chakma, CO2 capture processes-Opportunities for improved energy efficiencies, Energ. Convers. Manage. 38(1997) S51-S56. [51] M. Kundu, S.S. Bandyopadhyay, Solubility of CO2 in water + diethanolamine + Nmethyldiethanolamine, Fluid Phase Equilibr 248(2) (2006) 158-167. [52] T.L. Donaldson, Y.N. Nguyen, Carbon dioxide reaction kinetics and transport in aqueous amine membranes, Ind. Eng. Chem. 19(3) (1980) 260-266. [53] A. Samanta, S.S. Bandyopadhyay, Kinetics and modeling of carbon dioxide absorption into aqueous solutions of piperazine, Chem. Eng. Sci. 62(24) (2007) 7312-7319. [54] G. Sartori, D.W. Savage, Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. 22(2) (1983) 239-249. [55] J.M. Plaza, G.T. Rochelle, Modeling pilot plant results for CO2 capture by aqueous piperazine, Energ. Procedia 4(2011) 1593-1600. [56] V. Feyzi, M. Beheshti, A. Gharibi Kharaji, Exergy analysis:A CO2 removal plant using a-MDEA as the solvent, Energ. 118(2017) 77-84. [57] S.S. Warudkar, K.R. Cox, M.S. Wong, G.J. Hirasaki, Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture:Part I. High pressure strippers, Int. J. Greenh. Gas Con. 16(2013) 342-350. [58] A. Aboudheir, W. Elmoudir, Optimization of an existing 130 tonne per day CO2 capture plant from a flue gas slipstream of a coal power plant, Energ. Procedia 37(2013) 1509-1516. [59] S.A. Freeman, R. Dugas, D.H. Van Wagener, T. Nguyen, G.T. Rochelle, Carbon dioxide capture with concentrated, aqueous piperazine, Int. J. Greenh. Gas Con. 4(2) (2010) 119-124. [60] C. Nwaoha, K. Odoh, E. Ikpatt, R. Orji, R. Idem, Process simulation, parametric sensitivity analysis and ANFIS modeling of CO2 capture from natural gas using aqueous MDEA-PZ blend solution, Envoron. Chem. Eng. 5(6) (2017) 5588-5598. [61] H.M. Kvamsdal, G.T. Rochelle, Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine, Ind. Eng. Chem. 47(3) (2008) 867-875. [62] S. Moioli, L.A. Pellegrini, B. Picutti, P. Vergani, Improved rate-based modeling of H2S and CO2 removal by methyldiethanolamine scrubbing, Ind. Eng. Chem. 52(5) (2013) 2056-2065. [63] T.N.G. Borhani, M. Afkhamipour, A. Azarpour, V. Akbari, S.H. Emadi, Z.A. Manan, Modeling study on CO2 and H2S simultaneous removal using MDEA solution, Ind. Eng. Chem. 34(2016) 344-355. [64] A. Shahsavand, A. Garmroodi, Simulation of Khangiran gas treating units for various cooling scenarios, J. Nat. Gas Sci. Eng. 2(6) (2010) 277-283. [65] J.P. Gutierrez, L.A. Benitez, E.L. Ale Ruiz, E. Erdmann, A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening, J. Nat. Gas Sci. Eng. 31(2016) 800-807. [66] S. Mudhasakul, H. Ku, P.L. Douglas, A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator, Int. J. Greenh. Gas Con. 15(2013) 134-141. [67] J. Oexmann, C. Hensel, A. Kather, Post-combustion CO2-capture from coal-fired power plants:Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate, Int. J. Greenh. Gas Con. 2(4) (2018) 539-552. [68] A. Raksajati, M.T. Ho, D.E. Wiley, Reducing the cost of CO2 capture from flue gases using aqueous chemical absorption, Ind. Eng. Chem. 52(47) (2013) 16887-16901. [69] L. Ghalib, B.S. Ali, W.M. Ashri, S. Mazari, L.M. Saeed, Modeling the effect of piperazine on CO2 loading in MDEA/PZ mixture, Fluid Phase Equilibr. 434(2017) 233-243. [70] A. Dashti, M. Raji, A. Razmi, N. Rezaei, S. Zendehboudi, M. Asghari, Efficient hybrid modeling of CO2 absorption in aqueous solution of piperazine:Applications to energy and environment, Chem. Eng. Res. Des. 144(2019) 405-417. [71] L. Addington, C. Ness, An evaluation of general "Rules of Thumb" in amine sweetening unit design and operation, 89th Annual Convention of the Gas Processors Association, Austin, Texas, USA, Vol. 1, 2010, pp. 119-135. [72] J. Jung, Y.S. Jeong, U. Lee, Y. Lim, C. Han, New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants, Ind. Eng. Chem. 54(15) (2015) 3865-3878. [73] O. Younas, F. Banat, Parametric sensitivity analysis on a GASCO's acid gas removal plant using ProMax simulator, J. Nat. Gas Sci. Eng. 18(2014) 247-253. [74] M.F. De Figueiredo, K.D. Brito, W.B. Ramos, L.G. Sales Vasconcelos, R.P. Brito, Effect of solvent content on the separation and the energy consumption of extractive distillation columns, Chem. Eng. Commun. 202(9) (2014) 1191-1199. [75] W.A. Fouad, A.S. Berrouk, Using mixed tertiary amines for gas sweetening energy requirement reduction, J. Nat. Gas Sci. Eng. 11(2013) 12-17. |