[1] H. Lubin, C. Dupuis, J. Pytkowicz, Crystallization-induced dynamic resolution of fox chiral auxiliary and application to the diastereoselective electrophilic fluorination of amide enolates, J. Org. Chem. 78(7) (2013) 3487-3492. [2] K.W. Tang, W.F. Xu, P.L. Zhang, Experimental and model study on multistage enantioselective liquid-liquid extraction of ketoconazole enantiomers in centrifugal contactor separators, Ind. Eng. Chem. Res. 54(35) (2015) 8762-8771. [3] K.W. Tang, H. Zhang, Y.B. Liu, Experimental and simulation on enantioselective extraction in centrifugal contactor separators, AIChE J. 59(7) (2013) 2594-2602. [4] Y. Zhou, L. Li, K.D. Lin, X.P. Zhu, W.P. Liu, Enantiomer separation of triazole fungicides by high-performance liquid chromatography, Chirality 21(4) (2009) 421-427. [5] Z. Wang, C. Cai, Y. Lin, Enantioselective separation of ketoconazole enantiomers by membrane extraction, Sep. Purif. Technol. 79(1) (2011) 63-71. [6] A. Seidel-Morgenstern, L.C. Keßler, M. Kaspereit, New developments in simulated moving bed chromatography, Chem. Eng. Technol. 31(6) (2010) 826-837. [7] S. Xu, M. Wang, B. Feng, X.C. Han, Z.J. Lan, H.J. Gu, H.X. Li, H. Li, Dynamic kinetic resolution of amines by using palladium nanoparticles confined inside the cages of amine-modified MIL-11 and lipase, J. Catal. 363(2018) 9-17. [8] L. Tohala, F. Oukacine, C. Ravelet, Sequence requirements of oligonucleotide chiral selectors for the capillary electrophoresis resolution of low-affinity DNA binders, Electrophoresis 38(9-10) (2017) 1383-1390. [9] J.E. Rekoske, Chiral separations, AIChE J. 47(1) (2001) 2-5. [10] L. Hu, Y. Ren, O. Ramström, Chirality control in enzyme-catalyzed dynamic kinetic resolution of 1,3-oxathiolanes, J. Org. Chem. 80(16) (2015) 8478-8481. [11] A. Svendsen, Lipase protein engineering, Biochim. Biophys. Acta 1543(2) (2000) 223-238. [12] P. Chauhan, S.S. Chimni, Organocatalytic asymmetric synthesis of 3-amino-2-oxindole derivatives bearing a tetra-substituted stereocenter, Tetrahedron Asymmetry 24(7) (2013) 343-356. [13] V.B. Birman, H. Jiang, X. Li, Kinetic resolution of 2-oxazolidinones via catalytic, enantioselective N-acylation, J. Am. Chem. Soc. 128(20) (2006) 6536-6537. [14] M.F. Kao, P.Y. Lu, J.Y. Kao, (R,S)-2-chlorophenoxyl pyrazolides as novel substrates for improving lipase-catalyzed hydrolytic resolution, Chirality 24(1) (2012) 60-66. [15] M.P. Kamble, S.A. Chaudhari, R.S. Singhal, G.D. Yadav, Synergism of microwave irradiation and enzyme catalysis in kinetic resolution of (R,S)-1-phenylethanol by cutinase from novel isolate Fusarium ICT SAC1, Biochem. Eng. J. 117(2017) 121-128. [16] Y.C. Cheng, S.W. Tsai, Carica papaya lipase:An effective biocatalyst for esterification resolution of (RS)-2-(chlorophenoxy) propionic acid, Biochem. Eng. J. 53(3) (2007) 318-324. [17] U.T. Bornscheuer, Immobilizing enzymes:how to create more suitable biocatalysts, Angew. Chem. Int. Ed. 42(29) (2003) 3336-3337. [18] I. Bhushan, P.G.N. Qazi, G. Ingavle, Lipase enzyme immobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates, Process Biochem. 43(4) (2008) 321-330. [19] S.N. Fedosov, J. Brask, A.K. Pedersen, M. Nordblad, J.M. Woodley, X. Xu, Kinetic model of biodiesel production using immobilized lipase Candida antartica lipase B, J. Mol. Catal. B:Enzyme. 85-86(2013) 156-168. [20] J.M. Palomo, C. Ortiz, G. Fernandez-Lorente, M. Fuentes, J. M. Guisán, R. FernándezLafuente, Lipase-lipase interactions as a new tool to immobilize and modulate the lipase properties, Enzym. Microb. Technol. 36(4) (2005) 447-454. [21] D.B. Magadum, G.D. Yadav, Enantioselective resolution of (R, S)-α-methyl-4-pyridinemethanol using immobilized biocatalyst:Optimization and kinetic modeling, Biochem. Eng. J. 122(2017) 152-158. [22] J.B. Sontakke, G.D. Yadav, Kinetic modeling and statistical optimization of lipase catalyzed enantioselective resolution of (R, S)-2-pentanol, Ind. Eng. Chem. Res. 50(23) (2011) 12975-12983. [23] A. Chowdhury, D. Mitra, A kinetic study on the novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters, Biotechnol. Prog. 31(6) (2015) 1494-1499. [24] J.E. Hyun, D.W. Li, E.B. Lee, Anti-inflammatory, analgesic and antipyretic activities of loxoprofen sodium given intramuscularly in animals, Arch. Pharm. Res. 24(6) (2001) 541-545. [25] M. Tsuruoka, D. Wang, J. Tamaki, Analgesic effect of tape containing loxoprofen sodium on muscle pain-Comparison with other NSAIDs, Yakuri to Chiryo. 38(2010) 597-601. [26] M. Ravelo, E. Fuente, Ángeles Blanco, Esterification of glycerol and ibuprofen in solventless media catalyzed by free CALB:Kinetic modelling, Biochem. Eng. J. 101(2015) 228-236. [27] C.S. Chang, S.W. Tsai, J. Kuo, Lipase-catalyzed dynamic resolution of naproxen 2, 2, 2-trifluoroethyl thioester by hydrolysis in isooctane, Biotechnol. Bioeng. 64(1) (1999) 120-126. [28] Y.Y. Zhang, J.H. Liu, Kinetic study of enantioselective hydrolysis of (R, S)-ketoprofen ethyl ester using immobilized T. laibacchii lipase, Biochem. Eng. J. 54(1) (2011) 40-46. [29] S.D. Shinde, G.D. Yadav, Insight into microwave assisted immobilized Candida antarctica, lipase B catalyzed kinetic resolution of RS-(±)-ketorolac, Process Biochem. 50(2) (2015) 230-236. [30] S. Hazarika, P. Goswami, N.N. Dutta, Ethyl oleate synthesis by Porcine pancreatic lipase in organic solvents, Chem. Eng. J. 85(1) (2002) 61-68. [31] V. Athawale, N. Manjrekar, M. Athawale, Enzymatic synthesis of chiral menthyl methacrylate monomer by Pseudomonas cepacia lipase catalysed resolution of (±)-menthol, J. Mol. Catal. B:Enzymatic 16(3) (2001) 169-173. [32] J. Carla, M.V. Toledo, J.O. Grisales, L.E. Briand, Effect of co-solvents in the enantioselective esterification of (R/S)-ibuprofen with ethanol, Current Catal. 3(2) (2014) 131-138. [33] N.N. Gandhi, K.D. Mukherjee, Specificity of papaya lipase in esterification with respect to the chemical structure of substrates, J. Agri. Food Chem. 48(2) (2000) 566-570. [34] S.H. Pan, T. Kawamoto, T. Fukui, K. Sonomoto, A. Tanaka, Stereoselective esterification of halogen-containing carboxylic acids by lipase in organic solvent:Effects of alcohol chain length, Appl. Microbiol. Biot. 34(1) (1990) 47-51. [35] K. Dąbkowska, K.W. Szewczyk, Influence of temperature on the activity and enantioselectivity of Burkholderia cepacia, lipase in the kinetic resolution of mandelic acid enantiomers, Biochem. Eng. J. 46(2) (2009) 147-153. |