[1] L. Yang, Effect of gas composition on nitric oxide removal from simulated flue gas with DBD-NPC method, Chin. J. Chem. Eng. 27(12) (2019) 3017-3026. [2] M. Kampa, E. Castanas, Human health effects of air pollution, Environ. Pollut. 151(2) (2008) 362-367. [3] J. Yu, J. Low, W. Xiao, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets, J. Am. Chem. Soc. 136(25) (2014) 8839-8842. [4] W.S. Tunnicliffe, P.S. Burge, J.G. Ayres, Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients, Lancet 344(8939-8940) (1994) 1733-1736. [5] S. Caillol, Fighting global warming:the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change, J Photoch Photobio C 12(1) (2011) 1-19. [6] A.H. Wolfe, J.A. Patz, Reactive nitrogen and human health:Acute and long-term implications, Ambio 31(2) (2002) 120-126. [7] W.L. Chameides, F. Fehsenfeld, M.O. Rodgers, Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res.-Atmos. 97(D5) (1992) 6037-6055. [8] M. Matsuoka, W.S. Ju, H. Yamashita, In situ characterization of the Ag+ionexchanged zeolites and their photocatalytic activity for the decomposition of N2O into N2 and O2 at 298 K, J Photoch Photobio A 160(1-2) (2003) 43-46. [9] R.M. Harrison, A.R. Deacon, M.R. Jones, Sources and processes affecting concentrations of PM 10 and PM 2.5 particulate matter in Birmingham (UK), Atmos Environ 31(24) (1997) 4103-4117. [10] A.P. Murphy, Chemical removal of nitrate from water, Nature 350(6315) (1991) 223-225. [11] A.T. Hansen, C.L. Dolph, E. Foufoula-Georgiou, Contribution of wetlands to nitrate removal at the watershed scale, Nat. Geosci. 11(2) (2018) 127-132. [12] K.R. Burow, B.T. Nolan, M.G. Rupert, Nitrate in groundwater of the United States, 1991-2003, Environ Sci Technol, 44(13) (2010) 4988-4997. [13] C.D. Mote Jr., D.A. Dowling, J. Zhou, The power of an idea:the international impacts of the grand challenges for engineering, Engineering-Prc 2(1) (2016) 4-7. [14] Q. Yin, R. Wang, Z. Zhao, Application of Mg-Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water, J Clean Pron 176(2018) 230-240. [15] Z. Feng, T. Sun, A novel selective hybrid cation exchanger for low-concentration ammonia nitrogen removal from natural water and secondary wastewater, Chem. Eng. J. 281(2015) 295-302. [16] N. Barrabés, J. Sá, Catalytic nitrate removal from water, past, present and future perspectives, Appl Catal B-Environ 104(1-2) (2011) 1-5. [17] M. Shand, J.A. Anderson, Aqueous phase photocatalytic nitrate destruction using titania based materials:routes to enhanced performance and prospects for visible light activation, Catal Sci Technol 3(4) (2013) 879-899. [18] L. Knobeloch, B. Salna, A. Hogan, Blue babies and nitrate-contaminated well water, Environ health persp 108(7) (2000) 675-678. [19] N. Wehbe, M. Jaafar, C. Guillard, Comparative study of photocatalytic and nonphotocatalytic reduction of nitrates in water, Appl Catal A-Gen 368(1-2) (2009) 1-8. [20] J.C. Yu, V.H. Nguyen, J. Lasek, Competitive reaction pathway for photo and thermal catalytic removal of NO with hydrocarbon in flue gas under elevated temperatures, Catal. Commun. 84(2016) 40-43. [21] W.S. John, Cellular Ceramics:Structure, Manufacturing, Properties and Applications, Germany, 2006. [22] A.R. Studart, U.T. Gonzenbach, E. Tervoort, Processing routes to macroporous ceramics:A review, J. Am. Ceram. Soc. 89(6) (2006) 1771-1789. [23] T. Ohji, M. Fukushima, Macro-porous ceramics:processing and properties, Int. Mater. Rev. 57(2) (2012) 115-131. [24] J. Zhao, S. Shimai, G. Zhou, Ceramic foams shaped by oppositely charged dispersant and surfactant, Colloid Surface A 537(2018) 210-216. [25] C. Tallon, C. Chuanuwatanakul, D.E. Dunstan, Mechanical strength and damage tolerance of highly porous alumina ceramics produced from sintered particle stabilized foams, Ceram. Int. 42(7) (2016) 8478-8487. [26] U.T. Gonzenbach, A.R. Studart, E. Tervoort, Macroporous ceramics from particleom particleom pafoams, J. Am. Ceram. Soc. 90(1) (2007) 16-22. [27] Y. Hotta, P.C.A. Alberius, L. Bergström, Coated polystyrene particles as templates for ordered macroporous silica structures with controlled wall thickness, J. Mater. Chem. 13(3) (2003) 496-501. [28] W.E. Lee, Cellular solids, structure and properties, Mater Sci Tech-lond 16(2) (2000) 233. [29] Y. Chen, W. Huo, X. Zhang, Ultrahigh-strength alumina ceramic foams via gelation of foamed boehmite sol, J. Am. Ceram. Soc. 102(9) (2019) 5503-5513. [30] G.X. Song, Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light, Chin. J. Chem. Eng. 23(8) (2015) 1326-1334. [31] J.L. Zhang, M. Zhen, Porous g-C3N4with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride, Chin. J. Chem. Eng. 26(4) (2018) 753-760. [32] J. Sun, J. Xu, A. Grafmueller, Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol, Appl Catal B-Environ 205(2017) 1-10. [33] L. Shao, D. Jiang, P. Xiao, Enhancement of g-C3N4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer, Appl Catal B-Environ 198(2016) 200-210. [34] S. Zhao, Y. Zhang, Y. Zhou, Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting, Carbon 126(2018) 247-256. [35] Y. Deng, L. Tang, C. Feng, Construction of plasmonic Ag modified phosphorousdoped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visiblenear-infrared response ability for ciprofloxacin degradation, J. Hazard. Mater. 344(2018) 758-769. [36] W.W. Yang, Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light, Appl. Surf. Sci. 353(2015) 307-316. [37] S.N. Sun, C.L. Li, W.W. Yang, Photocatalytic removal of NO from flue gas by TiO2loaded on semi-coke prepared by sol-gel method, J. Mol. Catal. (China) 29(2) (2015) 188-196. [38] I. Troppová, Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide, Appl. Surf. Sci. 430(2018) 335-347. [39] X. Wang, K. Maeda, A. Thomas, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1) (2009) 76-80. [40] A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, J. Mol. Struct. 744(2015) 657-661. [41] T. Komatsu, The first synthesis and characterization of cyameluric high polymers, Macromol. Chem. Phys. 202(1) (2001) 19-25. [42] P. Wu, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage, J. Mater. Chem. A 2(47) (2014) 20338-20344. [43] I. Papailias, Effect of processing temperature on structure and photocatalytic properties of g-C3N4, Appl. Surf. Sci. 358(2015) 278-286. [44] S. Martha, A. Nashim, K. Parida, Facile syntheses of highly active g-C3N4 for efficient hydrogen production under visible light, J. Mater. Chem. A 1(26) (2013) 7816-7824. [45] X.C. Fu, W.X. Shen, Physical Chemistry, Higher Education Press, Beijing, 2006. [46] J.H. Park, Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process, J. Catal. 240(1) (2006) 47-57. [47] S.C. Ma, J.X. Ma, Y. Zhao, Experimental study on desulfurization and denitrification using UV/H2O2 system, Proc CSEE 29(5) (2009) 27-31. [48] Y. Liu, J. Pan, Y. Liu, Mass transfer-reaction kinetics for NO removal by combination process of UV/H2O2 oxidation and CaO absorption, CIESC J 64(3) (2013) 1062-1068. [49] M. Koebel, M. Elsener, M. Kleemann, Urea-SCR:a promising technique to reduce NOX emissions from automotive diesel engines, Catal. Today 59(3-4) (2000) 335-345. [50] N. Shirahama, Reaction of NO with urea supported on activated carbons, Appl. Catal. B Environ. 57(4) (2005) 237-245. [51] P. Fang, Simultaneous removal of SO2 and NOX by wet scrubbing using urea solution, Chem. Eng. J. 168(1) (2011) 52-59. |