[1] M.T. Craig, P. Jaramillo, H. Zhai, et al., The economic merits of flexible carbon capture and sequestration as a compliance strategy with the clean power plan, Environ. Sci. Technol. 51(3) (2017) 1102-1109. [2] D. Leeson, N. Mac Dowell, N. Shah, et al., A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources, Int. J. Greenhouse Gas Control 61(2017) 71-84. [3] IPCC, IPCC report, Geneva https://www.ipcc.ch/report/ar5/syr/, 2014. [4] G.N. Nikolaidis, E.S. Kikkinides, M.C. Georgiadis, Model-based approach for the evaluation of materials and processes for post-combustion carbon dioxide capture from flue gas by PSA/VSA processes, Ind. Eng. Chem. Res. 55(3) (2016) 635-646. [5] M.S. Walters, Y.J. Lin, D.J. Sachde, et al., Control relevant model of amine scrubbing for CO2 capture from power plants, Ind. Eng. Chem. Res. 55(6) (2016) 1690-1700. [6] F.A. Chowdhury, H. Yamada, T. Higashii, et al., CO2 capture by tertiary amine absorbents:A performance comparison study, Ind. Eng. Chem. Res. 52(24) (2013) 8323-8331. [7] P.C. Chen, M.W. Yang, C.H. Wei, et al., Selection of blended amine for CO2 capture in a packed bed scrubber using the Taguchi method, Int. J. Greenhouse Gas Control 45(2016) 245-252. [8] Y. Yu, T. Zhang, X. Wu, et al., Mass and heat transfer characteristic in MEA absorption of CO2 improved by meso-scale method, Int. J. Greenhouse Gas Control 47(2016) 310-321. [9] S. Ma'mun, H.F. Svendsen, K.A. Hoff, et al., Selection of new absorbents for carbon dioxide capture, Energy Convers. Manag. 48(1) (2007) 251-258. [10] A. Sanna, M.M. Maroto-Valer, Potassium-based sorbents from fly ash for hightemperature CO2 capture, Environ. Sci. Pollut. Res. 23(22) (2016) 22242-22252. [11] M. Ghadiri, A. Marjani, S. Shirazian, Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes, Environ. Sci. Pollut. Res. 24(16) (2017) 14508-14515. [12] E. Catalanotti, K.J. Hughes, R.T. Porter, et al., Evaluation of performance and cost of combustion-based power plants with CO2 capture in the United Kingdom, Environ. Prog. Sustain. Energy 33(4) (2014) 1425-1431. [13] B. Dutcher, M. Fan, A.G. Russell, Amine-based CO2 capture technology development from the beginning of 2013. A Review, ACS Appl. Mater. Interfaces 7(4) (2015) 2137-2148. [14] M. Fan, A. Tuwati, M. Assiri, Catalytic CO2 desorption for ethanolamine based CO2 capture technologies, United States Pat., 20160250591(2017). [15] P.A. Osei, Mass Transfer Studies on Catalyst-Aided CO2 Desorption in a Post Combustion CO2 Capture Plant, 2016, Master Thesis, University of Regina, Canada. [16] H. Shi, A. Naami, R. Idem, et al., Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents, Int. J. Greenhouse Gas Control 26(2014) 39-50. [17] M.E. Diego, B. Arias, G. Grasa, et al., Design of a novel fluidized bed reactor to enhance sorbent performance in CO2 capture systems using CaO, Ind. Eng. Chem. Res. 53(24) (2014) 10059-10071. [18] Y.A. Criado, A. Huille, S. Rougé, et al., Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J. 313(2017) 1194-1205. [19] S. Kallio, J. Peltola, T. Niemi, Modeling of the time-averaged gas-solid drag force in a fluidized bed based on results from transient 2D Eulerian-Eulerian simulations, Powder Technol. 261(2014) 257-271. [20] A. Bakshi, C. Altantzis, R.B. Bates, et al., Eulerian-Eulerian simulation of dense solid-gas cylindrical fluidized beds:Impact of wall boundary condition and drag model on fluidization, Powder Technol. 277(2015) 47-62. [21] E. Ghadirian, H. Arastoopour, CFD simulation of a fluidized bed using the EMMS approach for the gas-solid drag force, Powder Technol. 288(2016) 35-44. [22] M. Ayobi, S. Shahhosseini, Y. Behjat, Computational and experimental investigation of CO2 capture in gas-solid bubbling fluidized bed, J. Taiwan Inst. Chem. Eng. 45(2) (2014) 421-430. [23] Y.L. He, W. Tao, F. Song, et al., Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle, Int. J. Heat Fluid Flow 26(3) (2005) 459-473. [24] A.A. Minea, O. Manca, Field-synergy and figure-of-merit analysis of two oxide-water-based Nanofluids' flow in heated tubes, heat transfer, Engineering 38(10) (2017) 909-918. [25] Y. Yu, Y. Li, H. Lu, et al., Performance improvement for chemical absorption of CO2 by global field synergy optimization, Int. J. Greenhouse Gas Control 5(4) (2011) 649-658. [26] H. Yamada, Y. Matsuzaki, T. Higashii, et al., Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model, J. Phys. Chem. A 115(14) (2011) 3079-3086. [27] J.M. Plaza, D. Van Wagener, G.T. Rochelle, Modeling CO2 capture with aqueous monoethanolamine, Int. J. Greenhouse Gas Control 4(2) (2010) 161-166. [28] A. Di Renzo, N. Grassano, F.P. Di Maio, Force on a large sphere immersed in an expanded water-fluidized bed over a wide range of voidage values, Powder Technol. 316(1) (2017) 296-302. [29] A.S. Joel, M. Wang, C. Ramshaw, et al., Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation, Int. J. Greenhouse Gas Control 21(2014) 91-100. [30] W. Li, K. Yu, X. Yuan, et al., A Reynolds mass flux model for gas separation process simulation:Ⅱ. Application to adsorption on activated carbon in a packed column, Chin. J. Chem. Eng. 23(8) (2015) 1245-1255. [31] M.G. Schroeder, E. Brehob, M. Benedict, Experimentally Validated Model of Transient Heat Transfer between a Magnetocaloric Packed Particle Bed and Stagnant Interstitial Fluid Ph.D. Thesis, University of Louisville, 2016. [32] G. Liu, K. Yu, X. Yuan, et al., Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer, Chem. Eng. Sci. 61(19) (2006) 6511-6529. [33] S. Ogawa, A. Umemura, N. Oshima, On the equations of fully fluidized granular materials, Z. Angew. Math. Phys. 31(4) (1980) 483-493. [34] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, et al., Kinetic theories for granular flow:Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech. 140(1984) 223-256. [35] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, J. Differ. Equ. 66(1) (1987) 19-50. [36] A.W. Date, Introduction to Computational Fluid Dynamics, Cambridge University Press, New York, 2005. [37] G. Martinopoulos, D. Missirlis, G. Tsilingiridis, et al., CFD modeling of a polymer solar collector, Renew. Energy 35(7) (2010) 1499-1508. [38] Y.S. Yu, Y. Li, H.F. Lu, et al., Performance improvement for chemical absorption of CO2 by global field synergy optimization, Int. J. Greenhouse Gas Control 5(4) (2011) 649-658. [39] A. Aroonwilas, A. Veawab, Characterization and comparison of the CO2 absorption performance into single and blended Alkanolamines in a packed column, Ind. Eng. Chem. Res. 43(9) (2004) 2228-2237. [40] A. Krzemień, A. Więckol-Ryk, A. Smoliń ski, et al., Assessing the risk of corrosion in amine-based CO2 capture process, J. Loss Prev. Process Ind. 43(2016) 189-197. |