[1] G. Nagaraj, R.A. Senthil, K. Ravichandran, Firmness and bandgap engineered anatase TiO2 nanoparticles for enhanced visible light photocatalytic activity, Mater. Res. Express 6(9) (2019), 095049. [2] W.I. Nawawi, R. Zaharudin, A. Zuliahani, Immobilized TiO2-polyethylene glycol:Effects of aeration and pH of methylene blue dye, Appl. Sci. 7(5) (2017) 508. [3] H. Kong, J. Song, J. Jang, Photocatalytic antibacterial capabilities of TiO2-biochidal polymer nanocomposites synthesized by a surface-initiated photopolymerization, Environ. Sci. Technol. 44(2010) 5672-5676. [4] O. Akhavan, R. Azimirad, S. Safa, M.M. Larijani, Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents, J. Mater. Chem. 20(2010) 7386-7392. [5] K. Kaviyarasu, N. Geetha, K. Kanimozhi, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals:Investigation of bio-medical application by chemical method, Mater. Sci. Eng. C Mater. Biol. Appl. 74(2017) 325-333. [6] R.A. Damodar, S.J. You, H.H. Chou, Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, Journal of Hazarous Materials 172(2009) 1321-1328. [7] T.J. Liu, S.W. Sun, L. Zhou, Polyurethane-supported graphene oxide foam functionalized with carbon dots and TiO2 particles for photocatalytic degradation of dyes, Appl. Sci. 9(2) (2019) 293. [8] X.X. Xue, Y.Z. Wang, H. Yang, Preparation and characterization of boron-doped titania nanomaterials with antibacterial activity, Appl. Surf. Sci. 264(2013) 94-99. [9] X.M. Tang, J. Dai, H.L. Sun, Mechanical strength, surface properties, cytocompatibility and antibacterial activity of nano zinc-magnesium silicate/polyetheretherketone biocomposites, J. Nanosci. Nanotechnol. 19(12) (2019) 7615-7623. [10] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photoelectrochemical steril-ization of microbial cells by semiconductor powders, FEMS Microbiol. 29(1985) 211-214. [11] S. Mathew, P. Ganguly, S. Rhatigan, Cu-doped TiO2:Visible light assisted photocatalytic antimicrobial activity, Appl. Sci. 8(11) (2018), 2067. [12] S. Ghasemi, S. Rahimnejad, S.R. Rohani, Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid, J. Hazard. Mater. 172(2009) 1573-1578. [13] B. Moongraksathum, M.Y. Chien, Antiviral and antibacterial effects of silver-doped TiO2 prepared by the peroxo sol-gel method, J. Nanosci. Nanotechnol. 19(11) (2019) 7356-7362. [14] L.H. Li, Y. Xu, Z. Zhou, The effects of Cu-doped TiO2 thin films on hyperplasia, inflammation and bacteria infection, Applied Science Basel 5(4) (2019) 1016-1032. [15] H.R. Zhang, K.Q. Tan, H.W. Zheng, Preparation, characterization and photocatalytic activity of TiO2 co-doped with yttrium and nitrogen, Mater. Chem. Phys. 125(2011) 156-160. [16] A. Kubacka, M.J. Munoz-Batista, M. Ferrer, M. Fernandez-Garcia, Er-W codoping of TiO2-anatase:structural and electronic characterization and disinfection capability under UV-vis, and near-IR excitation, Appl. Catal. B Environ. 228(2018) 113-129. [17] X.G. Wang, X. Qi, S.L. Bo, Preparation and luminescent properties of rare earth Eu3+ doped nano-TiO2-SiO2 luminescent materials, Spectrosc. Spectr. Anal. 31(2011) 1193-1196. [18] J.X. Wang, Q.Y. Guo, X.T. Dong, Preparation and photocatalytic activity of Yttrium or neodymium doped TiO2 nanofibers, J. Inorg. Mater. 25(2010) 379-385. [19] W.J. Zhang, Y.X. Liu, X.B. Pei, J. Yang, Indium doping in sol-gel synthesis of In-Sm codoped xIn-0.05% Sm-TiO2 composite photocatalyst, Sci. Eng. Compos. Mater. 25(2018) 817-824. [20] W.F. Zhou, Z.Q. Zhu, J. Zhang, Synthesis of visible light response nitrogen doped nano-TiO2 photocatalyst by microwave chemistry method, Funct. Mater. 40(2009) 212-215. [21] W.Y. Zhou, Q.Y. Cao, S.Q. Tang, Study on doping mechanism and visible light photocatalytic activity of sulfur-doped nano-TiO2, J. Inorg. Mater. 21(2006) 776-782. [22] W.J. Cheng, X.J. Yu, Preparation,characterization and properties of photocatalyst C'NS-TiO2, Appl. Chem. 29(2012) 291-296. [23] A. Touseef, M.S. Hassan, Characterization and potent bactericidal effect of Cobalt doped Titanium dioxide nanofibers, Ceram. Int. 39(2013) 3189-3193. [24] E.P. Azadeh, M. Pejman, F. Behnam, Co/TiO2 nanoparticles:Preparation, characterization and its application for photocatalytic degradation of methylene blue, Desalin. Water Treat. 63(2017) 283-292. [25] Y.Z. Wang, H. Yang, X.X. Xue, Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium, Vacuum 107(2014) 28-32. [26] Y.Z. Wang, X.X. Xue, H. Yang, Modification of the antibacterial activity of Zn/TiO2 nanomaterials through different anions doped, Vacuum 101(2014) 193-199. [27] G.J. Dai, A.L. Yu, X. Cai, Q.S. Shi, Y.S. Ouyang, S.Z. Tao, Synthesis, characterization and antibacterial activity of zinc and cerium co-doped a-zirconium phosphate, Rare Earths 30(2012) 820-825. [28] X.Y. Ma, Q.J. Xiang, Y.L. Liao, Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E-coli disinfection and organic pollutant degradation, Appl. Surf. Sci. 457(2018) 846-855. [29] S. Vignesh, S. Suganthi, J.K. Sundar, Fabrication of heterostructured vanadium modified g-C3N4/TiO2 hybrid photocatalyst for improved photocatalytic performance under visible light exposure and antibacterial activities, J. Ind. Eng. Chem. 76(2019) 318-322. [30] M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity:A combined experimental and theoretical study, J. Appl. Phys. 114(2013) 183514. [31] M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles:Application to the degradation of methyl orange, J. Iran. Chem. Soc. 7(2010) 52-58. [32] N.W. Shang, W.S. Ping, R. Qun, Silanized TiO2 nanoparticles and their application in toner as charge control agents:Preparation and characterization, Chem. Eng. J. 214(2013) 272-277. [33] H. Lee, Y.K. Park, S.J. Kim, B.H. Kim, Titanium dioxide modification with cobalt oxide nanoparticles for photocatalysis, J. Ind. Eng. Chem. 32(2015) 259-263. [34] L.D. Tijing, M.T. Ruelo, A. Amarjargal, Antibacterial and auperhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles, Chem. Eng. J. 197(2012) 41-48. [35] G. Rajakumar, A. Rahuman, S.M. Roopan, Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, Spectrochim. Acta A Mol. Biomol. Spectrosc. 91(2012) 23-29. [36] N. Haghighi, Y. Abdi, F. Haghighi, Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires, Appl. Surf. Sci. 257(23) (2011) 10096-10100. [37] H.U. Lee, S.C. Lee, H. Sae, Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications, Appl. Catal. B Environ. 129(2013) 106-113. [38] J.M. Wu, Y.P. Wang, H.P. Yang, Photocatalytic properties of Ce and N co-doped modified TiO2 and the effect of Ce component, J. Inorg. Chem. 26(2010) 203-210. [39] L. Shen, Z.B. Zhao, J.S. Qiu, W.Y. Deng, Synthesis of ZnO nanomaterials by sol-gel method and its antibacterial performance, J. Funct. Mater. 11(2007) 1908-1911. [40] F. Fei, The preparation of nanometer silver colloid and its antibacterial property, Proceedings of the 13th National Conference on Packaging Engineering (2010) 229-235. [41] B. Roberta, F.I. Roselyne, B. Nicolas, D. Shakib, B. Marc F, F. Fernand, Toxicological impact studies based on escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, 6(4) (2006) 866-870. [42] B.Q. Yu, H.F. Zhang, W. Lu, X.F. Tang, F.J. Xing, Research on the difference of bactericide performance between nano-ZnO and ZnO, Feed Industry 24(2007) 34-37. |