Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (9): 2235-2247.DOI: 10.1016/j.cjche.2020.06.016
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Xiaoxia Duan1,2, Xin Feng1,2, Chong Peng3, Chao Yang1,2, Zaisha Mao1
Received:
2020-03-02
Revised:
2020-06-08
Online:
2020-10-21
Published:
2020-09-28
Contact:
Xin Feng
Supported by:
Xiaoxia Duan1,2, Xin Feng1,2, Chong Peng3, Chao Yang1,2, Zaisha Mao1
通讯作者:
Xin Feng
基金资助:
Xiaoxia Duan, Xin Feng, Chong Peng, Chao Yang, Zaisha Mao. Numerical simulation of micro-mixing in gas-liquid and solid-liquid stirred tanks with the coupled CFD-E-model[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2235-2247.
Xiaoxia Duan, Xin Feng, Chong Peng, Chao Yang, Zaisha Mao. Numerical simulation of micro-mixing in gas-liquid and solid-liquid stirred tanks with the coupled CFD-E-model[J]. 中国化学工程学报, 2020, 28(9): 2235-2247.
[1] J.C. Cheng, X. Feng, D. Cheng, C. Yang, Retrospect and perspective of micro-mixing studies in stirred tanks, Chin. J. Chem. Eng. 20(1) (2012) 178-190. [2] L. Vicum, S. Ottiger, M. Mazzotti, L. Makowski, J. Baldyga, Multi-scale modeling of a reactive mixing process in a semibatch stirred tank, Chem. Eng. Sci. 59(8-9) (2004) 1767-1781. [3] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Study of micromixing in a stirred tank using a Rushton turbine-comparison of feed positions and other mixing devices, Chem. Eng. Res. Des. 80(A8) (2002) 855-863. [4] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Intensifying micromixing in a semi-batch reactor using a Rushton turbine, Chem. Eng. Sci. 60(8-9) (2005) 2333-2339. [5] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Macro- and micromixing studies in an unbaffled vessel agitated by a Rushton turbine, Chem. Eng. Sci. 63(1) (2008) 35-46. [6] J. Yang, Q.H. Zhang, Z.-S. Mao, C. Yang, Enhanced micromixing of non-Newtonian fluids by a novel zigzag punched impeller, Ind. Eng. Chem. Res. 58(16) (2019) 6822-6829. [7] W.W. Lin, D.J. Lee, Micromixing effects in aerated stirred tank, Chem. Eng. Sci. 52(21-22) (1997) 3837-3842. [8] D.W.F. Brilman, R. Antink, W.P.M. van Swaaij, G.F. Versteeg, Experimental study of the effect of bubbles, drops and particles on the product distribution for a mixing sensitive, parallel-consecutive reaction system, Chem. Eng. Sci. 54(13-14) (1999) 2325-2337. [9] W.B. Li, X.Y. Geng, Y.Y. Bao, Z.M. Gao, Micromixing characteristics in an aerated stirred tank with half elliptical blade disk turbine, Int. J. Chem. React. Eng. 12(1) (2014) 2194-5748. [10] J. Hofinger, R.W. Sharpe, W. Bujalski, S. Bakalis, M. Assirelli, A. Eaglesham, A.W. Nienow, Micromixing in two-phase (G-L and S-L) systems in a stirred vessel, Can. J. Chem. Eng. 89(5) (2011) 1029-1039. [11] H. Unadkat, C.D. Rielly, G.K. Hargrave, Z.K. Nagy, Application of fluorescent PIV and digital image analysis to measure turbulence properties of solid-liquid stirred suspensions, Chem. Eng. Res. Des. 87(4A) (2009) 573-586. [12] L. Yang, J.C. Cheng, P. Fan, C. Yang, Z.S. Mao, Micromixing of solid-liquid systems in a stirred tank with double impellers, Chem. Eng. Technol. 36(3) (2013) 443-449. [13] D. Cheng, X. Feng, C. Yang, Z.S. Mao, Modelling and experimental investigation of micromixing of single-feed semi-batch precipitation in a liquid-liquid stirred reactor, Chem. Eng. J. 293(2016) 291-301. [14] W.B. Li, X.Y. Geng, Y.Y. Bao, Z.M. Gao, Micromixing characteristics in a gas-liquidsolid stirred tank with settling particles, Chin. J. Chem. Eng. 23(3) (2015) 461-470. [15] M. Jasińska, J. Bałdyga, M. Cooke, A. Kowalski, Investigations of mass transfer with chemical reactions in two-phase liquid-liquid systems, Chem. Eng. Res. Des. 91(11) (2013) 2169-2178. [16] R.O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge, 2003. [17] D.L. Marchisio, A.A. Barresi, CFD simulation of mixing and reaction:The relevance of the micro-mixing model, Chem. Eng. Sci. 58(16) (2003) 3579-3587. [18] Z. Wang, Q.H. Zhang, C. Yang, Z.S. Mao, X.Q. Shen, Simulation of barium sulfate precipitation using CFD and FM-PDF modeling in a continuous stirred tank, Chem. Eng. Technol. 30(12) (2007) 1642-1649. [19] J. Baldyga, M. Henczka, L. Makowski, Effect of mixing on parallel chemical reactions in a continuous-flow stirred-tank reactor, Chem. Eng. Res. Des. 79(8) (2001) 895-900. [20] J. Baldyga, L. Makowski, CFD modeling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank, Chem. Eng. Technol. 27(3) (2004) 225-231. [21] L. Wang, R.O. Fox, Comparison of micromixing models for CFD simulation of nanoparticle formation, AIChE J. 50(9) (2004) 2217-2232. [22] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AIChE J. 52(2) (2006) 731-744. [23] D.L. Marchisio, Large eddy simulation of mixing and reaction in a confined impinging jets reactor, Comput. Chem. Eng. 33(2) (2009) 408-420. [24] X.X. Duan, X. Feng, Z.-S. Mao, C. Yang, Numerical simulation of reactive mixing process in a stirred reactor with the DQMOM-IEM model, Chem. Eng. J. 360(2019) 1177-1187. [25] X.X. Duan, X. Feng, C. Yang, Z.-S. Mao, CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor, Chin. J. Chem. Eng. 26(4) (2018) 675-683. [26] O. Akiti, P.M. Armenante, Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors, AIChE J. 50(3) (2004) 566-577. [27] Y. Han, J.J. Wang, X.P. Gu, L.F. Feng, Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor, Chem. Eng. Sci. 74(2012) 9-17. [28] X.X. Duan, X. Feng, C. Yang, Z.-S. Mao, Numerical simulation of micro-mixing in stirred reactors using the engulfment model coupled with CFD, Chem. Eng. Sci. 140(2) (2016) 179-188. [29] T.Y. Guo, X. Shi, G.W. Chu, Y. Xiang, L.X. Wen, J.F. Chen, Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor, Ind. Eng. Chem. Res. 55(17) (2016) 4856-4866. [30] Z.-S. Mao, C. Yang, Micro-mixing in chemical reactors:A perspective, Chin. J. Chem. Eng. 25(4) (2017) 381-390. [31] J. Baldyga, J.R. Bourne, Simplification of micromixing calculations. 1. Derivation and application of new model, Chem. Eng. J. 42(2) (1989) 83-92. [32] K. Malik, J. Baldyga, Influence of micromixing on the course of homogenous chemical reactions in suspensions, 14th European Conference on Mixing, Warszawa. (2012) 281-286. [33] V.V. Ranade, Numerical simulation of dispersed gas-liquid flows, Sadhana Acad. Proc. Eng. Sci. 17(1992) 237-273. [34] M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(A5) (2001) 533-546. [35] F. Kerdouss, A. Bannari, P. Proulx, R. Bannari, M. Skrga, Y. Labrecque, Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng. 32(8) (2008) 1943-1955. [36] H.N. Wang, X.Q. Jia, X. Wang, Z.X. Zhou, J.P. Wen, J.L. Zhang, CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank, Appl. Math. Model. 38(1) (2014) 63-92. [37] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor, Ind. Eng. Chem. Res. 45(12) (2006) 4416-4428. [38] G.R. Kasat, A.R. Khopkar, V.V. Ranade, A.B. Pandita, CFD simulation of liquid-phase mixing in solid-liquid stirred reactor, Chem. Eng. Sci. 63(15) (2008) 3877-3885. [39] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of suspension curves, Chem. Eng. J. 178(2011) 324-341. [40] A.R. Khopkar, J. Aubin, C. Xuereb, N. Le Sauze, J. Bertrand, V.V. Ranade, Gas-liquid flow generated by a pitched-blade turbine:Particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332. [41] R. Gelves, A. Dietrich, R. Takors, Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller, Bioprocess Biosyst. Eng. 37(3) (2014) 365-375. [42] A. Ochieng, M.S. Onyango, Drag models, solids concentration and velocity distribution in a stirred tank, Powder Technol. 181(1) (2008) 1-8. [43] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of solid particle distribution, Chem. Eng. J. 223(2013) 875-890. [44] A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314. [45] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns, Chem. Eng. Sci. 61(9) (2006) 2921-2929. [46] A.R. Khopkar, V.V. Ranade, CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flow regimes, AIChE J. 52(5) (2006) 1654-1672. [47] A.R. Sarhan, J. Naser, G. Brooks, CFD modeling of bubble column:Influence of physico-chemical properties of the gas/liquid phases properties on bubble formation, Sep. Purif. Technol. 201(2018) 130-138. [48] Q. Li, J.C. Cheng, C. Yang, Z.-S. Mao, Simulation of a bubble column by computational fluid dynamics and population balance equation using the cell average method, Chem. Eng. Technol. 40(10) (2017) 1792-1801. [49] Y.H. Zhang, Y.L. Bai, H.L. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35. [50] S.F. Yang, X.Y. Li, C. Yang, B. Ma, Z.-S. Mao, Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor, Ind. Eng. Chem. Res. 55(12) (2016) 3276-3286. [51] R.O. Fox, CFD models for analysis and Design of Chemical Reactors, Adv. Chem. Eng. 31(2006) 231-305. [52] J. Baldyga, J.R. Bourne, S.J. Hearn, Interaction between chemical reactions and mixing on various scales, Chem. Eng. Sci. 52(4) (1997) 457-466. [53] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I:Experimental procedure, Chem. Eng. Sci. 55(19) (2000) 4233-4243. [54] B.N. Murthy, R.S. Ghadge, J.B. Joshi, CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension, Chem. Eng. Sci. 62(24) (2007) 7184-7195. [55] J. Baldyga, J.R. Bourne, The effect of micromixing on parallel reactions, Chem. Eng. Sci. 45(4) (1990) 907-916. [56] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated Rushton impeller:Two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80(4) (2002) 638-652. [57] M. Barigou, M. Greaves, Bubble-size distributions in a mechanically agitated gas-liquid contactor, Chem. Eng. Sci. 47(8) (1992) 2009-2025. [58] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 89(1-3) (2002) 109-117. [59] G. Montante, M.H. Occulti, F. Magelli, A. Paglianti, PIV measurements of mean flow and turbulence modulation in dilute solid-liquid stirred tanks, 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2010, Lisbon, Portugal. [60] M. Micheletti, L. Nikiforaki, K.C. Lee, M. Yianneskis, Particle concentration and mixing characteristics of moderate-to-dense solid-liquid suspensions, Ind. Eng. Chem. Res. 42(24) (2003) 6236-6249. [61] P. Ranganathan, S. Sivaraman, Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics, Chem. Eng. Sci. 66(14) (2011) 3108-3124. [62] K. Ng, M. Yianneskis, Observations on the distribution of energy dissipation in stirred vessels, Chem. Eng. Res. Des. 78(A3) (2000) 334-341. [63] M. Soos, R. Kaufmann, R. Winteler, M. Kroupa, B. Luthi, Determination of maximum turbulent energy dissipation rate generated by a Rushton impeller through large Eddy simulation, AIChE J. 59(10) (2013) 3642-3658. [64] V.B. Rewatkar, K. Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated 3-phase reactors. 1. Experimental part, Ind. Eng. Chem. Res. 30(8) (1991) 1770-1784. [65] X. Feng, J.C. Cheng, X.Y. Li, C. Yang, Z.-S. Mao, Numerical simulation of turbulent flow in a baffled stirred tank with an explicit algebraic stress model, Chem. Eng. Sci. 69(1) (2012) 30-44. [66] X. Feng, X.Y. Li, J.C. Cheng, C. Yang, Z.-S. Mao, Numerical simulation of solid-liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model, Chem. Eng. Sci. 82(2012) 272-284. [67] A. Ochieng, A.E. Lewis, CFD simulation of solids off-bottom suspension and cloud height, Hydrometallurgy. 82(1-2) (2006) 1-12. |
[1] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[4] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[5] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[6] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[7] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[8] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[9] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[10] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[11] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[12] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[13] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[14] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[15] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 498
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||