Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (1): 35-46.DOI: 10.1016/j.cjche.2020.08.025
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Kai Zhu1,2, Chaoqun Yao1, Yanyan Liu1,2, Guangwen Chen1
Received:
2020-06-01
Revised:
2020-07-06
Online:
2021-04-02
Published:
2021-01-28
Contact:
Chaoqun Yao, Guangwen Chen
Supported by:
Kai Zhu1,2, Chaoqun Yao1, Yanyan Liu1,2, Guangwen Chen1
通讯作者:
Chaoqun Yao, Guangwen Chen
基金资助:
Kai Zhu, Chaoqun Yao, Yanyan Liu, Guangwen Chen. Using expansion units to improve CO2 absorption for natural gas purification-A study on the hydrodynamics and mass transfer[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 35-46.
Kai Zhu, Chaoqun Yao, Yanyan Liu, Guangwen Chen. Using expansion units to improve CO2 absorption for natural gas purification-A study on the hydrodynamics and mass transfer[J]. 中国化学工程学报, 2021, 29(1): 35-46.
[1] T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C.D. da Costa, E.F. May, The removal of CO2 and N2 from natural gas:a review of conventional and emerging process technologies, J. Pet. Sci. Eng. 94(2012) 123-154. [2] N.I.M. Noor, U. Eldemerdash, A.M. Shariff, Modification of adsorbents for high CO2 content capture from stranded natural gas reserve:a critical review, Adv. Mater. Res. 917(2014) 342-349. [3] N. Dabrowski, C. Windmeier, L.R. Oellrich, Purification of natural gases with high CO2 content using gas hydrates, Energy Fuel 23(2009) 5603-5610. [4] E.L. First, M.M.F. Hasan, C.A. Floudas, Discovery of novel zeolites for natural gas purification through combined material screening and process optimization, AIChE J. 60(2014) 1767-1785. [5] B. Aghel, S. Sahraie, E. Heidaryan, Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor, Sep. Purif. Technol. 237(2020) 116390. [6] B. Aghel, S. Sahraie, E. Heidaryan, K. Varmira, Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor, Process. Saf. Environ. Prot. 131(2019) 152-159. [7] B. Aghel, E. Heidaryan, S. Sahraie, M. Nazari, Optimization of monoethanolamine for CO2 absorption in a microchannel reactor, J. CO2 Util. 28(2018) 264-273. [8] B. Aghel, E. Heidaryan, S. Sahraie, S. Mir, Application of the microchannel reactor to carbon dioxide absorption, J. Clean. Prod. 231(2019) 723-732. [9] B. Aghel, S. Sahraie, E. Heidaryan, Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor, Energy 201(2020) 117618. [10] V. Hessel, P. Angeli, A. Gavriilidis, H. Lowe, Gas-liquid and gas-liquid-solid microstructured reactors:contacting principles and applications, Ind. Eng. Chem. Res. 44(2005) 9750-9769. [11] V. Hessel, H. Lowe, F. Schonfeld, Micromixers-a review on passive and active mixing principles, Chem. Eng. Sci. 60(2005) 2479-2501. [12] K. Jahnisch, V. Hessel, H. Lowe, M. Baerns, Chemistry in microstructured reactors, Angew. Chem. Int. Ed. 43(2004) 406-446. [13] R. Keoschkerjan, M. Richter, D. Boskovic, F. Schnurer, S. Lobbecke, Novel multifunctional microreaction unit for chemical engineering, Chem. Eng. J. 101(2004) 469-475. [14] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, An experimental investigation of gas-liquid two-phase flow in single microchannel contactors, Chem. Eng. Sci. 63(2008) 4189-4202. [15] G. Chen, J. Yue, Q. Yuan, Gas-liquid microreaction ttechnology:recent developments and future challenges, Chin. J. Chem. Eng. 16(2008) 663-669. [16] J. Yue, G. Chen, Q. Yuan, L. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62(2007) 2096-2108. [17] C. Yao, K. Zhu, Y. Liu, H. Liu, F. Jiao, G. Chen, Intensified CO2 absorption in a microchannel reactor under elevated pressures, Chem. Eng. J. 319(2017) 179-190. [18] H. Ganapathy, A. Shooshtari, S. Dessiatoun, M.M. Ohadi, M. Alshehhi, Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes, Chem. Eng. J. 266(2015) 258-270. [19] N.N. Gao, J.X. Wang, L. Shao, J.F. Chen, Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor, Ind. Eng. Chem. Res. 50(2011) 6369-6374. [20] J. Tan, Y.C. Lu, J.H. Xu, G.S. Luo, Mass transfer performance of gas-liquid segmented flow in microchannels, Chem. Eng. J. 181-182(2012) 229-235. [21] C. Ye, M. Dang, C. Yao, G. Chen, Q. Yuan, Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors, Chem. Eng. J. 225(2013) 120-127. [22] C. Ye, G. Chen, Q. Yuan, Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor, Chin. J. Chem. Eng. 20(2012) 111-119. [23] A. Shooshtari, R. Kuzmicki, S. Dessiatoun, M. Alshehhi, E. Al Hajri, M.M. Ohadi, Enhancement of CO2 Absorption in Aqueous Diethanolamine Amine Using Microchannel Contactors, Carbon Management Technology Conference, Orlando, Florida, USA, 2012. [24] H. Ganapathy, A. Shooshtari, S. Dessiatoun, M. Alshehhi, M. Ohadi, Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor, Appl. Energy 119(2014) 43-56. [25] K. Zhu, C. Yao, Y. Liu, G. Chen, Theoretical approach to CO2 absorption in microreactors and reactor volume prediction, Chem. Eng. Process. 150(2020) 107904. [26] A.H.G. Cents, D.W.F. Brilman, G.F. Versteeg, Gas absorption in an agitated gas-liquidliquid system, Chem. Eng. Sci. 56(2001) 1075-1083. [27] P. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34(1979) 443-446. [28] M. Caplow, Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90(1968) 6795-6803. [29] E.B. Rinker, S.S. Ashour, O.C. Sandall, Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine, Ind. Eng. Chem. Res. 35(1996) 1107-1114. [30] C. Yao, Y. Zhao, G. Chen, Multiphase processes with ionic liquids in microreactors:hydrodynamics, mass transfer and applications, Chem. Eng. Sci. 189(2018) 340-359. [31] J. Yue, G. Chen, Q. Yuan, L. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62(2007) 2096-2108. [32] C. Yao, Z. Dong, Y. Zhao, G. Chen, The effect of system pressure on gas-liquid slug flow in a microchannel, AIChE J. 60(2014) 1132-1142. [33] C. Yao, Y. Zhao, C. Ye, M. Dangi, Z. Dong, G. Chen, Characteristics of slug flow with inertial effects in a rectangular microchannel, Chem. Eng. Sci. 95(2013) 246-256. [34] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal twophase, two-component flow in pipes, Chem. Eng. Prog. 45(1949) 39-48. [35] D. Chisholm, A theoretical basis for Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transf. 10(1967) 1767-1778. [36] K. Mishima, T. Hibiki, Some characteristics of air-water two-phase flow in small diameter vertical tubes, Int. J. Multiphase Flow 22(1996) 703-712. [37] H.J. Lee, S.Y. Lee, Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights, Int. J. Multiphase Flow 27(2001) 783-796. [38] M. Awad, Y. Muzychka, Bounds on Two-Phase Frictional Pressure Drop Gradient in Minichannels and Microchannels, International Conference on Nanochannels, Microchannels and Minichannels, Limerick, Ireland, 2006. [39] J.F. Chen, G.Z. Chen, J.X. Wang, L. Shao, P.F. Li, High-throughput microporous tubein-tube microreactor as novel gas-liquid contactor:mass transfer study, AIChE J. 57(2011) 239-249. [40] C. Yao, Z. Dong, Y. Zhao, G. Chen, An online method to measure mass transfer of slug flow in a microchannel, Chem. Eng. Sci. 112(2014) 15-24. [41] T. Cubaud, M. Sauzade, R. Sun, CO2 dissolution in water using long serpentine microchannels, Biomicrofluidics 6(2012) 022002. [42] L. Yang, K. Loubière, N. Dietrich, C. Le Men, C. Gourdon, G. Hébrard, Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel, Chem. Eng. Sci. 165(2017) 192-203. [43] M. Roudet, K. Loubiere, C. Gourdon, M. Cabassud, Hydrodynamic and mass transfer in inertial gas-liquid flow regimes through straight and meandering millimetric square channels, Chem. Eng. Sci. 66(2011) 2974-2990. [44] C. Yao, Z. Dong, Y. Zhao, G. Chen, Gas-liquid flow and mass transfer in a microchannel under elevated pressures, Chem. Eng. Sci. 123(2015) 137-145. [45] Y. Zhao, G. Chen, C. Ye, Q. Yuan, Gas-liquid two-phase flow in microchannel at elevated pressure, Chem. Eng. Sci. 87(2013) 122-132. [46] J.C.S.H.M. Letzel, R. Krishna, C.M. van den Bleek, Gas holdup and mass transfer in bubble column reactors operated at elevated pressure, Chem. Eng. Sci. 54(1999) 2237-2246. [47] S. Maalej, B. Benadda, M. Otterbein, Interfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressures, Chem. Eng. Sci. 58(2003) 2365-2376. [48] P. Galindo, A. Schäffer, K. Brechtel, S. Unterberger, G. Scheffknecht, Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions, Fuel 101(2012) 2-8. [49] H. Ganapathy, S. Steinmayer, A. Shooshtari, S. Dessiatoun, M.M. Ohadi, M. Alshehhi, Process intensification characteristics of a microreactor absorber for enhanced CO2 capture, Appl. Energy 162(2016) 416-427. [50] Y. Kawase, M. Moo-Young, Mathematical models for design of bioreactors:applications of:Kolmogoroff's theory of isotropic turbulence, Chem. Eng. J. 43(1990) 19-41. [51] M.J. Nieves-Remacha, A.A. Kulkarni, K.F. Jensen, Gas-liquid flow and mass transfer in an advanced-flow reactor, Ind. Eng. Chem. Res. 52(2013) 8996-9010. [52] L. Falk, J.M. Commenge, Performance comparison of micromixers, Chem. Eng. Sci. 65(2010) 405-411. [53] E.B. Rinker, S.S. Ashour, O.C. Sandall, Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine, Ind. Eng. Chem. Res. 35(1996) 1107-1114. [54] P. Sobieszuk, J. Aubin, R. Pohorecki, Hydrodynamics and mass transfer in gas-liquid flows in microreactors, Chem. Eng. Technol. 35(2012) 1346-1358. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[4] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[5] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[6] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[7] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[8] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[9] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[10] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[11] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[12] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[13] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[14] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[15] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 346
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||