[1] M. Kwauk, Generalized fluidization I. Steady motion, Sci. Sinica 12(1963) 587-612. [2] J. Yerushalmi, N.T. Cankurt, D. Geldart, B. Liss, Flow Regimes in Vertical Gas-solid Systems, AIChE Symposium Series, U.S.A., 1978 [3] K. Luo, W. Liu, J. Zhu, J.M. Beeckmans, Characterization of gas upward-solids downward counter-current fluidized flow, Powder Technol. 115(2001) 36-44. [4] J. Zhu, Z. Yu, Y. Jin, J.R. Grace, A. Issangya, Cocurrent downflow circulating fluidized bed (downer) reactors-a state of the art review, Can. J. Chem. Eng. 73(1995) 662-677. [5] J.R. Grace, Contacting modes and behaviour classification of gas-solids and other two-phase systems, Can. J. Chem. Eng. 64(1986) 353-363. [6] J. Li, M. Kwauk, Particle-fluid Two-phase Flow:The Energy-minimization Multiscale Method, Metallurgical Industry Press, Beijing, 1994(in Chinese). [7] W. Ge, J. Li, Physical mapping of fluidization regimes-the EMMS approach, Chem. Eng. Sci. 57(2002) 3993-4004. [8] H. Bi, H. Cui, J. Grace, A. Kern, C.J. Lim, D. Rusnell, X. Song, C. Mcknight, Flooding of gas-solids countercurrent flow in fluidized beds, Ind. Eng. Chem. Res. 43(2004) 5611-5619. [9] J. Liu, X. Liu, Z. Zhang, H. Zhao, W. Ge, Modeling the axial hydrodynamics of gas-solid counter-current downers, Particuology 50(2020) 135-143. [10] F.C. Silvey, G.J. Keller, Testing on a commercial scale packed power, Chem. Eng. Prog. 62(1966) 68-74. [11] D. Bai, E. Shibuya, N. Nakagawa, K. Kato, Characterization of gas fluidization regimes using pressure fluctuations, Powder Technol. 87(1996) 105-111. [12] Y. Li, B. Chen, F. Wang, Y. Wang, M. Kwauk, The dynamics of fast fluidization, J, Chem. Ind. Eng. 30(1979) 143-152. [13] J. Yerushalmi, N.T. Cankurt, Further studies of regimes of fluidization, Powder Technol. 24(1979) 187-205. [14] F.A. Zenz, Two-phase fluid-solid flow, Ind. Eng. Chem. 41(1949) 2801-2806. [15] H. Bi, J.R. Grace, Flow regime diagram for gas-solid fluidization and upward transport, Int. J. Multiphase Flow 21(1995) 1229-1236. [16] Z. Sun, J. Zhu, A consolidated flow regime map of upward gas fluidization, AIChE J. 65(2019) 1-15. [17] E. Rabinovich, H. Kalman, Flow regime diagram for vertical pneumatic conveying and fluidized bed systems, Powder Technol. 207(2011) 119-133. [18] S. Hu, X. Liu, J. Li, Steady-state modeling of axial heterogeneity in CFB risers based on one-dimensional EMMS model, Chem. Eng. Sci. 96(2013) 165-173. [19] S. Hu, X. Liu, N. Zhang, J. Li, W. Ge, W. Wang, Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gassolid two-fluid method, Chem. Eng. J. 307(2017) 326-338. [20] X. Liu, Y. Jiang, C. Liu, W. Wang, J. Li, Hydrodynamic modeling of gas-solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory, Ind. Eng. Chem. Res. 53(2014) 2800-2810. [21] Z. Zhang, S. Hu, X. Liu, H. Zhao, Modeling the hydrodynamics of cocurrent gas-solid downers according to energy-minimization multi-scale theory, Particuology 29(2016) 110-119. [22] L. Lu, J. Xu, W. Ge, Y. Yue, X. Liu, J. Li, EMMS-based discrete particle method (EMMSDPM) for simulation of gas-solid flows, Chem. Eng. Sci. 120(2014) 67-87. [23] L. Lu, J. Xu, W. Ge, G. Gao, Y. Jiang, M. Zhao, X. Liu, J. Li, Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method-EMMS-DPM, Chem. Eng. Sci. 155(2016) 314-337. [24] S. Hu, X. Liu, A general EMMS drag model applicable for gas-solid turbulent beds and cocurrent downers, Chem. Eng. Sci. 205(2019) 14-24. [25] X. Liu, S. Hu, Y. Jiang, J. Li, Extension and application of energy-minimization multiscale (EMMS) theory for full-loop hydrodynamic modeling of complex gas-solid reactors, Chem. Eng. J. 278(2015) 492-503. [26] X. Gao, C. Wu, Y. Cheng, L. Wang, X. Li, Experimental and numerical investigation of solid behavior in a gas-solid turbulent fluidized bed, Powder Technol. 228(2012) 1-13. [27] H. Zhang, J. Zhu, M.A. Bergougnou, Hydrodynamics in downflow fluidized beds (1):solids concentration profiles and pressure gradient distributions, Chem. Eng. Sci. 54(1999) 5461-5470. [28] C. Wang, C. Li, J. Zhu, C. Wang, S. Barghi, J. Zhu, A comparison of flow development in high density gas-solids circulating fluidized bed downer and riser reactor, AIChE J. 61(2015) 1172-1183. [29] H. Zhang, W. Huang, J. Zhu, Gas-solids flow behavior:CFB riser vs. downer, AIChE J. 47(2001) 2000-2011. [30] P. Cai, Y. Jing, Z. Yu, Z. Wang, A criterion for transition from bubbling to turbulent fluidization, J, Chem. Ind. Eng. 37(1986) 391-401. [31] D. Bai, K. Kato, Saturation carrying capacity of gas and flow regimes in CFB, J. Chem. Eng. Japan 28(1995) 179-185. [32] H. Bi, L. Fan, Regime Transitions in Gas-solid Circulating Fluidized Beds, AIChE Annual Meeting, Los Angeles, USA, 1991. |