[1] C.J. Jiang, D.D. Li, P.Y. Zhang, J.G. Li, J. Wang, J.G. Yu, Formaldehyde and volatile organic compound (VOC) emissions from particleboard:Identification of odorous compounds and effects of heat treatment, Build. Environ 117(2017) 118-126. [2] T. Salthammer, Formaldehyde in the ambient atmosphere:From an indoor pollutant to an outdoor pollutant? Angew. Chem. Intl. Edit 52(12) (2013) 3320-3327. [3] J.J. Collins, R. Ness, R.W. Tyl, N. Krivanek, N.A. Esmen, T.A. Hall, A review of adverse pregnancy outcomes and formaldehyde exposure in human and animal studies, Regul. Toxicol. Pharm 34(1) (2001) 17-34. [4] H.Q. Rong, Z.Y. Liu, Q.L. Wu, D. Pan, J.T. Zheng, Formaldehyde removal by Rayonbased activated carbon fibers modified by P-aminobenzoic acid, Cellulose 17(1) (2010) 205-214. [5] J.J. Pei, J.S.S. Zhang, On the performance and mechanisms of formaldehyde removal by chemi-sorbents, Chem. Eng. J 167(1) (2011) 59-66. [6] J.W. Ye, X.F. Zhu, B. Cheng, J.G. Yu, C.J. Jiang, Few-layered graphene-like boron nitride:A highly efficient adsorbent for indoor formaldehyde removal, Environ. Sci. Tech. Let 4(1) (2017) 20-25. [7] S. Mirdamadi, A. Rajabi, P. Khalilzadeh, D. Norozian, A. Akbarzadeh, F.A. Mohseni, Isolation of bacteria able to metabolize high concentrations of formaldehyde, World. J. Microb. Biot 21(6-7) (2005) 1299-1301. [8] M. Giese, U. Bauerdoranth, C. Langebartels, H. Sandermann, Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures, Plant. Physiol 104(4) (1994) 1301-1309. [9] W. Cui, D. Xue, X. Yuan, B. Zheng, M. Jia, W. Zhang, Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions, Appl. Surf. Sci 411(2017) 105-112. [10] H. Huang, D.Y.C. Leung, Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature, J. Catal 280(1) (2011) 60-67. [11] S. Li, C.I. Ezugwu, S. Zhang, Y. Xiong, S. Liu, Co-doped MgAl-LDHs nanosheets supported Au nanoparticles for complete catalytic oxidation of HCHO at room temperature, Appl. Surf. Sci. 487(2019) 260-271. [12] Y. Shi, Z. Qiao, Z. Liu, J. Zuo, Cerium doped Pt/TiO2 for catalytic oxidation of low concentration formaldehyde at room temperature, Catal. Lett 149(5) (2019) 1319-1325. [13] H.C. Wu, T.C. Chen, Y.C. Chen, J.F. Lee, C.S. Chen, Formaldehyde oxidation on silicasupported Pt catalysts:The influence of thermal pretreatments on particle formation and on oxidation mechanism, J. Catal 355(1-2) (2017) 87-100. [14] X.F. Tang, J.L. Chen, X.M. Huang, Y. Xu, W.J. Shen, Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature, Appl. Catal. B. Environ 81(1-2) (2008) 115-121. [15] H.F. Li, N. Zhang, P. Chen, M.F. Luo, J.Q. Lu, High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation, Appl. Catal. B. Environ 110(2011) 279-285. [16] L. Wang, H.Q. Yue, Z.L. Hua, H.Y. Wang, X.B. Li, L.C. Li, Highly active Pt/NaxTiO2 catalyst for low temperature formaldehyde decomposition, Appl. Catal. B. Environ 219(2017) 301-313. [17] M.C. Alvarez-Galvan, B. Pawelec, V.A.D. O'Shea, J.L.G. Fierro, P.L. Arias, Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst, Appl. Catal. B. Environ 51(2) (2004) 83-91. [18] F.L. Yu, Z.P. Qu, X.D. Zhang, Q. Fu, Y. Wang, Investigation of CO and formaldehyde oxidation over mesoporous Ag/Co3O4 catalysts, J. Energy. Chem 22(6) (2013) 845-852. [19] R.M. Fang, M. He, H.B. Huang, Q.Y. Feng, J. Ji, Y.J. Zhan, D.Y.C. Leung, W. Zhao, Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature, Chemosphere 213(2018) 235-243. [20] C.F. Mao, M.A. Vannice, Formaldehyde oxidation over Ag catalysts, J. Catal 154(2) (1995) 230-244. [21] H.-F. Li, N. Zhang, P. Chen, M.-F. Luo, J.-Q. Lu, High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation, Appl. Catal. B. Environ 110(2011) 279-285. [22] Q. Xu, W. Lei, X. Li, X. Qi, J. Yu, G. Liu, J. Wang, P. Zhang, Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature, Environ. Sci. Technol 48(16) (2014) 9702-9708. [23] C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. FlytzaniStephanopoulos, H. He, Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures, Angew. Chem. Int. Ed. Engl 51(38) (2012) 9628-9632. [24] C.B. Zhang, H. He, K. Tanaka, Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature, Appl. Catal. B. Environ. 65(1-2) (2006) 37-43. [25] L. Zhu, J.L. Wang, S.P. Rong, H.Y. Wang, P.Y. Zhang, Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature, Appl. Catal. B. Environ 211(2017) 212-221. [26] J. Zhou, L.F. Qin, W. Xiao, C. Zeng, N. Li, T. Lv, H. Zhu, Oriented growth of layeredMnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation, Appl. Catal. B. Environ 207(2017) 233-243. [27] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, J. Am. Chem. Soc 100(1) (1978) 170-175. [28] Z.X. Yan, Z.H. Xu, L. Yue, L. Shi, L.Y. Huang, Hierarchical Ni-Al hydrotalcite supported Pt catalyst for efficient catalytic oxidation of formaldehyde at room temperature, Chinese. J. Catal 39(12) (2018) 1919-1928. [29] C. Zhang, H. He, K.-i. Tanaka, Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature, Catal. Commun 6(3) (2005) 211-214. [30] H. Huang, D.Y.C. Leung, D. Ye, Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation, J. Mate. Chem 21(26) (2011) 9647-9652. [31] L.F. Qi, W.K. Ho, J.L. Wang, P.Y. Zhang, J.G. Yu, Enhanced catalytic activity of hierarchically macro-/mesoporous Pt/TiO2 toward room-temperature decomposition of formaldehyde, Catal. Sci. Technol 5(4) (2015) 2366-2377. [32] L.F. Qi, B. Cheng, J.G. Yu, W.K. Ho, High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature, J. Hazard. Mater 301(2016) 522-530. [33] P. Panagiotopoulou, A. Christodoulakis, D.I. Kondarides, S. Boghosian, Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts, J. Catal 240(2) (2006) 114-125. [34] X. Zhu, M. Shen, L.L. Lobban, R.G. Mallinson, Structural effects of Na promotion for high water gas shift activity on Pt-Na/TiO2, J. Catal 278(1) (2011) 123-132. [35] M.J. Tiernan, O.E. Finlayson, Effects of ceria on the combustion activity and surface properties of Pt/Al2O3 catalysts, Appl. Catal. B. Environ 19(1) (1998) 23-35. [36] W.Y. Cui, L. Liu, J.J. Yang, N.D. Tan, Effect of preparation method on the catalytic performance of formaldehyde oxidation over octahedral Fe3O4 microcrystals supported Pt catalysts, J. Disper. Sci. Technol (2019) 1-8. [37] X.D. Jiang, Y.P. Zhang, J. Jiang, Y.S. Rong, Y.C. Wang, Y.C. Wu, C.X. Pan, Characterization of oxygen vacancy associates within hydrogenated TiO2:A positron annihilation study, J. Phys. Chem. C 116(42) (2012) 22619-22624. [38] J. Ruiz-Martínez, A. Sepúlveda-Escribano, J.A. Anderson, F. Rodríguez-Reinoso, Spectroscopic and microcalorimetric study of a TiO2-supported platinum catalyst, Phys. Chem. Chem. Phys 11(6) (2009) 917-920. |