[1] R.N. Bharagava, G. Saxena, S.I. Mulla, D.K. Patel, Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety, Arch. Environ. Contam. Toxicol. 75(2) (2018) 259-272. [2] S. Mishra, R.N. Bharagava, Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies, J. Environ. Sci. Heal. C. 34(1) (2016) 1-32. [3] Z.B. Bouabidi, M.H. El-Naas, Z.E. Zhang, Immobilization of microbial cells for the biotreatment of wastewater:a review, Environ. Chem. Lett. 17(1) (2019) 241-257. [4] O.M. Ontanon, P.S. Gonzalez, L.F. Ambrosio, C.E. Paisio, E. Agostini, Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots, Int. Biodeterior. Biodegradation 88(2) (2014) 192-198. [5] Y. Wang, H. Chen, Y.X. Liu, R.P. Ren, Y.K. Lv, An adsorption-releasebiodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater, Bioresour. Technol. 211(2016) 711-719. [6] Y.B. Huang, P. Cay-Durgun, T.M. Lai, P. Yu, M.L. Lind, Phenol removal from water by polyamide and AgCl mineralized thin-film composite forward osmosis membranes, Ind. Eng. Chem. Res. 57(20) (2018) 7021-7029. [7] D.F. Zhang, P.L. Huo, W. Liu, Behavior of phenol adsorption on thermal modified activated carbon, Chin. J. Chem. Eng. 24(4) (2016) 446-452. [8] M.D. Murcia, N.O. Vershinin, N. Briantceva, M. Gomez, E. Gomez, E. Cascales, A. M. Hidalgo, Development of a kinetic model for the UV/H2O2 photodegradation of 2,4-dichlorophenoxiacetic acid, Chem. Eng. J. 266(2015) 356-367. [9] Y. Shao, H.H. Chen, Heterogeneous Fenton oxidation of phenol in fixed-bed reactor using Fe nanoparticles embedded within ordered mesoporous carbons, Chem. Eng. Res. Des. 132(2018) 57-68. [10] T.W. Leal, L.A. Lourenço, H.D. Brandao, A. da Silva, S.M.A.G.U. de Souza, A.A.U. de Souza, Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton, J. Hazard. Mater. 359(2018) 96-103. [11] R. Underhill, R.J. Lewis, S.J. Freakley, M. Douthwaite, P.J. Miedziak, O. Akdim, J. K. Edwardsa, G.J. Hutchings, Oxidative degradation of phenol using in-situ generated H2O2 combined with Fenton's process, Johnson. Matthey. Tech. 62(4) (2018) 417-425. [12] Q.L. Ge, X.P. Yue, G.Y. Wang, Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp. PD-7, Chin. J. Chem. Eng. 23(5) (2015) 835-841. [13] H.Y. Liu, Z.L. Chen, M. Megharaj, R. Naidu, Biodegradation of TNT using Bacillus mycoides immobilized in PVA-sodium alginate-kaolin, Appl. Clay Sci. 83(2013) 336-342. [14] M.B. Cassidy, H. Lee, J.T. Trevors, Environmental applications of immobilized microbial cells:a review, J. Ind. Microbiol. Biotechnol. 16(2) (1996) 79-101. [15] L.C. Jiang, Q.P. Ruan, R.L. Li, T.D. Li, Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y, J. Basic Microbiol. 53(3) (2013) 224-230. [16] G. Satchanska, Y. Topalova, R. Dimkov, V. Groudeva, P. Petrov, C. Tsvetanov, S. Selenska-Pobell, E. Golovinsky, Phenol degradation by environmental bacteria entrapped in cryogels, Biotechnol. Biotec. Eq. 29(3) (2015) 514-521. [17] H. Zhang, Z.Y. Wu, Y.Y. Yang, F.Q. Yang, S.P. Li, Recent applications of immobilized biomaterials in herbal, J. Chromatogr. A 1603(2019) 216-230. [18] A. Krivoruchko, M. Kuyukina, I. Ivshina, Advanced Rhodococcus biocatalysts for environmental biotechnologies, Catalysts. 9(3) (2019) 236. [19] D.M. Liu, J. Chen, Y.P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, Trac-trend. Anal. Chem. 102(2018) 332-343. [20] R.M. Manzo, R.J. Ceruti, H.L. Bonazza, W.S. Adriano, G.A. Sihufe, E.J. Mammarella, Immobilization of carboxypeptidase a into modified chitosan matrixes by covalent attachment, Appl. Biochem. Biotechnol. 185(4) (2018) 1029-1043. [21] X.X. Qin, J.J. Wang, G.J. Zheng, Enantioselective resolution of gamma-lactam by a whole cell of microbacterium hydrocarbonoxydans (L29-9) immobilized in polymer of PVA-alginate-boric acid, Appl. Biochem. Biotechnol. 162(8) (2010) 2345-2354. [22] L.S. Zhang, W.Z. Wu, J.L. Wang, Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, J. Environ. Sci. 19(11) (2007) 1293-1297. [23] L. Jin, R.B. Bai, Mechanisms of lead adsorption on Chitosan/PVA hydrogel beads, Langmuir. 18(25) (2002) 9765-9770. [24] R. Chen, L.F. Ren, J.H. Shao, Y.L. He, X.F. Zhang, Changes in degrading ability, populations and metabolism of microbes in activated sludge in the treatment of phenol wastewater, RSC Adv. 7(83) (2017) 52841-52851. [25] M. Youssef, E.H. El-Shatoury, S.S. Ali, G.E. El-Taweel, Enhancement of phenol degradation by free and immobilized mixed culture of Providencia stuartii PL4 and Pseudomonas aeruginosa PDM isolated from activated sludge, Bioremediat. J. 23(2) (2019) 53-71. |