Chinese Journal of Chemical Engineering ›› 2021, Vol. 32 ›› Issue (4): 423-430.DOI: 10.1016/j.cjche.2020.10.016
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Suransh Jain, Arvind Kumar Mungray
Received:
2020-05-25
Revised:
2020-06-28
Online:
2021-06-19
Published:
2021-04-28
Contact:
Arvind Kumar Mungray
Supported by:
Suransh Jain, Arvind Kumar Mungray
通讯作者:
Arvind Kumar Mungray
基金资助:
Suransh Jain, Arvind Kumar Mungray. Comparative study of different hydro-dynamic flow in microbial fuel cell stacks[J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 423-430.
Suransh Jain, Arvind Kumar Mungray. Comparative study of different hydro-dynamic flow in microbial fuel cell stacks[J]. 中国化学工程学报, 2021, 32(4): 423-430.
[1] B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science 337(2012) 686-690. [2] J.E. Mink, R.M. Qaisi, B.E. Logan, M.M. Hussain, Energy harvesting from organic liquids in micro-sized microbial fuel cells, Npg Asia Mater. 6(2014) e89. [3] B.E. Logan, Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments, ChemSusChem 5(2012) 988-994. [4] S. Firdous, W. Jin, N. Shahid, Z.A. Bhatti, A. Iqbal, U. Abbasi, Q. Mahmood, A. Ali, The performance of microbial fuel cells treating vegetable oil industrial wastewater, Environ. Technol. Innov. 10(2018) 143-151. [5] D. Molognoni, S. Chiarolla, D. Cecconet, A. Callegari, A.G. Capodaglio, Industrial wastewater treatment with a bioelectrochemical process:assessment of depuration efficiency and energy production, Water Sci. Technol. 77(2018) 134-144. [6] K. Senthilkumar, M.N. Kumar, Generation of bioenergy from industrial waste using microbial fuel cell technology for the sustainable future, in:Refin. Biomass Residues Sustain.Energy Bioprod.,Elsevier,Amsterdam (2020) 183-193. [7] S. Naik, S.E. Jujjavarappu, Simultaneous bioelectricity generation from costeffective MFC and water treatment using various wastewater samples, Environ. Sci. Pollut. Res. 27(2020) 27383-27393. [8] E.B. Estrada-Arriaga, Y. Guillen-Alonso, C. Morales-Morales, L. García-Sánchez, E.O. Bahena-Bahena, O. Guadarrama-Pérez, F. Loyola-Morales, Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production, Water Sci. Technol. 76(2017) 683-693. [9] H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol. 38(2004) 4040-4046. [10] S.-E. Oh, B.E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol. 70(2006) 162-169. [11] M. Ghasemi, W.R.W. Daud, M. Ismail, M. Rahimnejad, A.F. Ismail, J.X. Leong, M. Miskan, K. Ben Liew, Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, Int. J. Hydrogen Energy 38(2013) 5480-5484. [12] J. Xu, G.P. Sheng, H.W. Luo, W.W. Li, L.F. Wang, H.Q. Yu, Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res. 46(2012) 1817-1824. [13] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour. Technol. 102(2011) 9335-9344. [14] F.A. Alatraktchi, Y. Zhang, I. Angelidaki, Nanomodification of the electrodes in microbial fuel cell:impact of nanoparticle density on electricity production and microbial community, Appl. Energy 116(2014) 216-222. [15] M. Di Lorenzo, A.R. Thomson, K. Schneider, P.J. Cameron, I. Ieropoulos, A smallscale air-cathode microbial fuel cell for on-line monitoring of water quality, Biosens. Bioelectron. 62(2014) 182-188. [16] B.E. Logan, Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol. 85(2010) 1665-1671. [17] I. Ieropoulos, J. Greenman, C. Melhuish, Microbial fuel cells based on carbon veil electrodes:stack configuration and scalability, Int. J. Energy Res. 32(2008) 1228-1240. [18] A. Dekker, A. Ter Heijne, M. Saakes, H.V.M. Hamelers, C.J.N. Buisman, Analysis and improvement of a scaled-up and stacked microbial fuel cell, Environ. Sci. Technol. 43(2009) 9038-9042. [19] J. Choi, Y. Ahn, Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater, J. Environ. Manage. 130(2013) 146-152. [20] S. Kuchi, O. Sarkar, S.K. Butti, G. Velvizhi, S.V. Mohan, Stacking of microbial fuel cells with continuous mode operation for higher bioelectrogenic activity, Bioresour. Technol. 257(2018) 210-216. [21] I. Gajda, O. Obata, M.J. Salar-Garcia, J. Greenman, I.A. Ieropoulos, Long-term bio-power of ceramic Microbial Fuel Cells in individual and stacked configurations, Bioelectrochemistry 133(2020) 107459. [22] A.E. Eseyin, E.M. El-Giar, J.D. Dodo, M.O. Ekemezie, Effect of stacking microbial fuel cells on electricity generation from sludge, J. Biofuels 10(2019) 35-40. [23] E.B. Estrada-Arriaga, J. Hernández-Romano, L. García-Sánchez, R.A.G. Garcés, E. O. Bahena-Bahena, O. Guadarrama-Pérez, G.E.M. Chavez, Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell:effect of series and parallel configuration, J. Environ. Manage. 214(2018) 232-241. [24] P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol. 40(2006) 3388-3394. [25] S.-E. Oh, B.E. Logan, Voltage reversal during microbial fuel cell stack operation, J. Power Sources 167(2007) 11-17. [26] F. Khaled, O. Ondel, B. Allard, Optimal energy harvesting from serially connected microbial fuel cells, IEEE Trans. Ind. Electron. 62(2014) 3508-3515. [27] P. Ledezma, J. Greenman, I. Ieropoulos, MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions, Bioresour. Technol. 134(2013) 158-165. [28] L. Zhuang, Y. Yuan, Y. Wang, S. Zhou, Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater, Bioresour. Technol. 123(2012) 406-412. [29] C. Yuvraj, V. Aranganathan, Configuration analysis of stacked microbial fuel cell in power enhancement and its application in wastewater treatment, Arab. J. Sci. Eng. 43(2018) 101-108. [30] Y. Asensio, E. Mansilla, C.M. Fernandez-Marchante, J. Lobato, P. Cañizares, M.A. Rodrigo, Towards the scale-up of bioelectrogenic technology:Stacking microbial fuel cells to produce larger amounts of electricity, J. Appl. Electrochem. 47(2017) 1115-1125. [31] I.A. Ieropoulos, A. Stinchcombe, I. Gajda, S. Forbes, I. Merino-Jimenez, G. Pasternak, D. Sanchez-Herranz, J. Greenman, Pee power urinal-microbial fuel cell technology field trials in the context of sanitation, Environ. Sci. Water Res. Technol. 2(2016) 336-343. [32] J. Suransh, A.K. Tiwari, A.K. Mungray, Modification of clayware ceramic membrane for enhancing the performance of microbial fuel cell, Environ. Prog. Sustain. Energy 39(40) (2020) e13427. [33] W.E.F. APHA AWWA, Standard methods for the examination of water and wastewater 20th edition, Am. Public Heal. Assoc. Am. Water Work Assoc. Water Environ. Fed. Washington, DC. (1998). [34] C. Jayashree, S. Sweta, P. Arulazhagan, I.T. Yeom, M.I.I. Iqbal, J.R. Banu, Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell, Biotechnol. Bioprocess Eng. 20(2015) 753-759. [35] B.E. Logan, Microbial Fuel Cells, John Wiley & Sons, 2008. [36] T.K. Nagsarkar, M.S. Sukhija, Basic Electrical Engineering, Oxford Univ. Press, 2005. [37] X. Zhang, W. He, L. Ren, J. Stager, P.J. Evans, B.E. Logan, COD removal characteristics in air-cathode microbial fuel cells, Bioresour. Technol. 176(2015) 23-31. [38] A.K. Tiwari, S. Jain, A.A. Mungray, A.K. Mungray, SnO2:PANI modified cathode for performance enhancement of air-cathode microbial fuel cell, J. Environ. Chem. Eng. 8(2020) 103590. [39] A. Arkatkar, A.K. Mungray, P. Sharma, Effect of treatment on electron transfer mechanism in microbial fuel cell, Energy Sources, Part A Recover. Util. Environ. Eff. (2019), https://doi.org/10.1080/15567036.2019.1668878. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 341-354. |
[3] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[4] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[5] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[6] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
[7] | Aiqin Gao, Xiang Luo, Huanghuang Chen, Aiqin Hou, Hongjuan Zhang, Kongliang Xie. Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 264-271. |
[8] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[9] | Honggui Han, Meiting Sun, Huayun Han, Xiaolong Wu, Junfei Qiao. Univariate imputation method for recovering missing data in wastewater treatment process [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 201-210. |
[10] | Wei Hong, Xinran Shen, Jian Wang, Xin Feng, Wenjing Zhang, Jing Li, Zidong Wei. High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 30-35. |
[11] | Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90-102. |
[12] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[13] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[14] | Jian Chen, Lingbing Bu, Yingqi Luo. Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 112-119. |
[15] | Jinyan Xi, Kang Meng, Ying Li, Meng Wang, Qiang Liao, Zidong Wei, Minhua Shao, Jianchuan Wang. Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 473-479. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 231
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||