Chinese Journal of Chemical Engineering ›› 2021, Vol. 33 ›› Issue (5): 221-230.DOI: 10.1016/j.cjche.2020.07.066
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Abbas Bambaeero, Reza Bazargan-Lari
Received:
2020-06-02
Revised:
2020-07-10
Online:
2021-08-19
Published:
2021-05-28
Contact:
Reza Bazargan-Lari
Abbas Bambaeero, Reza Bazargan-Lari
通讯作者:
Reza Bazargan-Lari
Abbas Bambaeero, Reza Bazargan-Lari. Simultaneous removal of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite[J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 221-230.
Abbas Bambaeero, Reza Bazargan-Lari. Simultaneous removal of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite[J]. 中国化学工程学报, 2021, 33(5): 221-230.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.07.066
[1] J.R. Peralta-Videa, M.L. Lopez, M. Narayan, G. Saupe, J. Gardea-Torresdey, The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain, Int. J. Biochem. Cell Biol. 41(2009) 1665-1677. [2] U. Jadhav, H. Hocheng, A review of recovery of metals from industrial waste, J. Achiev. Mater. Manuf. Eng. 54(2012) 159-167. [3] R. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol. 2011(2011) 1-20. [4] U. Förstner, Water pollution: wastewater, in: In: Integrated Pollution Control, Springer, Berlin Heidelelberg, (1998) 197-238. [5] E. Barth, M. Ettinger, B.V. Salotto, Gt McDermott, Summary report on the effects of heavy metals on the biological treatment processes, J. Water Pollut. Control Fed. (1965) 86-96. [6] M. Friedlova, The influence of heavy metals on soil biological and chemical properties, J. Soil Water. Sci. 5(2010) 21-27. [7] V. Mushtakova, V. Fomina, V. Rogovin, Toxic effect of heavy metals on human blood neutrophils, Biol. Bull. 32(2005) 276-278. [8] G. Notarachille, F. Arnesano, V. Calò, D. Meleleo, Heavy metals toxicity: Effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease, Biometals 27(2014) 371-388. [9] J.M. Matés, J.A. Segura, F.J. Alonso, J. Márquez, Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms, Free Radic. Biol. Med. 49(2010) 1328-1341. [10] W. Shao, Q. Liu, X. He, H. Liu, A. Gu, Z. Jiang, Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011, Environ. Sci. Pollut. Res. 24(2017) 11573-11581. [11] I. Shiue, Association of urinary arsenic, heavy metal, and phthalate concentrations with food allergy in adults: National health and nutrition examination survey, 2005-2006, Ann. Allergy Asthma Immunol. 111(2013) 421-423. [12] S. Podzimek, J. Prochazkova, L. Pribylova, J. Bártová, Z. Ulcová-Gallová, L. Mrklas, V. Stejskal, Effect of heavy metals on immune reactions in patients with infertility, Cas. Lek. Cesk. 142(2003) 285-288. [13] E. Lynch, R. Braithwaite, A review of the clinical and toxicological aspects of ‘traditional’(herbal) medicines adulterated with heavy metals, Expert Opin. Drug Saf. 4(2005) 769-778. [14] S.A. El Rehim, S. Sayyah, M. El Deeb, Electroplating of copper films on steel substrates from acidic gluconate baths, Appl. Sur. Sci. 165(2000) 249-254. [15] J.C. Hsieh, C.C. Hu, T.C. Lee, The synergistic effects of additives on improving the electroplating of zinc under high current densities, J. Electrochem. Soc. 155(2008) D675-D681. [16] V. Jassal, U. Shanker, B. Kaith, S. Shankar, Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes, RSC Adv. 5(2015) 26141-26149. [17] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review, J. Hazard. Mater. 211(2012) 317-331. [18] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92(2011) 407-418. [19] F. Veglio, F. Beolchini, Removal of metals by biosorption: A review, Hydrometallurgy 44(1997) 301-316. [20] V. Renge, S. Khedkar, S.V. Pande, Removal of heavy metals from wastewater using low cost adsorbents: A review, Sci Revs Chem Commun 2(2012) 580-584. [21] M. Saifuddin, P. Kumaran, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Electr. J. Biotechn. 8(2005) 43-53. [22] L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: A review, J. Mol. Liq. 214(2016) 175-191. [23] D.H.K. Reddy, S.M. Lee, Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions, Adv. Colloid Interface Sci. 201(2013) 68-93. [24] R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu (II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng. 45(2014) 1642-1648. [25] A. Ayoub, R.A. Venditti, J.J. Pawlak, A. Salam, M.A. Hubbe, Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal, ACS Sustain. Chem. Eng. 1(2013) 1102-1109. [26] N. Ahmad, S. Sultana, M.Z. Khan, S. Sabir, Chitosan based nanocomposites as efficient adsorbents for water treatment, In: Modern Age Waste Water Problems, Springer, 2020, pp. 69-83. [27] R. Vidal, J. Moraes, Removal of organic pollutants from wastewater using chitosan: a literature review, Int. J. Environ. Sci. Technol. 16(2019) 1741-1754. [28] C.L. Vieira, F.O.S. Neto, V.H. Carvalho-Silva, R. Signini, Design of apolar chitosan-type adsorbent for removal of Cu (II) and Pb (II): An experimental and DFT viewpoint of the complexation process, J. Environ. Chem. Eng. 7(2019) 103070. [29] F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, L. Tayebi, Mechanical properties of natural chitosan/ hydroxyapatite/magnetite nanocomposites for tissue engineering applications, Mater. Sci. Eng., C 6(2016) 338-344. [30] W. Prongmanee, I. Alam, P. Asanithi, Hydroxyapatite/graphene oxide composite for electrochemical detection of L-Tryptophan, J. Taiwan Inst. Chem. Eng. 102(2019) 415-423. [31] M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng. 45(2014) 518-526. [32] A. Kaviani, S.M. Zebarjad, S. Javadpour, M. Ayatollahi, R Bazargan-Lari, Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold, Int. J. Polym. Anal. Charact. 24(2019) 191-203. [33] R. Bazargan-Lari, M. Bahrololoom, A. Nemati, Sorption behavior of Zn (II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water, J. Food Agric. Environ. 9(2011) 892-897. [34] E. Skwarek, Adsorption of Zn on synthetic hydroxyapatite from aqueous solution, Sep. Sci. Technol. 49(2014) 1654-1662. [35] E. Skwarek, W. Janusz, Adsorption of Cd (II) ions at the hydroxyapatite/electrolyte solution interface, Separ. Sci. Technol. 51(2016) 11-21. [36] W. Janusz, E. Skwarek, Study of sorption processes of strontium on the synthetic hydroxyapatite, Adsorption 22(2016) 697-706. [37] W. Janusz, E. Skwarek, Effect of Co (II) ions adsorption in the hydroxyapatite/ aqueous NaClO4 solution system on particles electrokinetics, Physicochem. Problems Min. Process. 54(2018) 31-39. [38] A.M. Soliman, H.M. Elwy, T. Thiemann, Y. Majedi, F.T. Labata, N.A.F. AlRawashdehaf, Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves, J. Taiwan Inst. Chem. Eng. 58(2016) 264-273. [39] T. Guangqun, W. Yu, L. Yong, X. Dan, Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent, J. Taiwan Inst. Chem. Eng. 84(2018) 85-92. [40] R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu(II) ions from aqueous solution by low-cost natural hydroxyapatite/chitosan composite: Kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng. 45(2013) 1642-1648. [41] R. Bazargan-Lari, M.E. Bahrololoom, A. Nemati, Sorption behavior of Zn(II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water, J. Food Agric. Environ. 9(2011) 892-897. [42] F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, L. Tayebi, Mechanical properties of natural chitosan/ hydroxyapatite/magnetic nanocomposites for tissue engineering applications, Mater. Sci. Eng. 65(2016) 338-344. [43] P. Ricou-Hoeffer, I. Lecuyer, P. Le Cloirec, Experimental design methodology applied to adsorption of metallic ions onto fly ash, Water Res. 35(2001) 965-976. [44] S. Teixeira, C. Delerue-Matos, L. Santos, Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon, Sci. Total Environ. 646(2019) 168-176. [45] M. Bahrami, M.J. Amiri, F. Bagheri, Optimization of the lead removal from aqueous solution using two starch based adsorbents: design of experiments using response surface methodology (RSM), J. Environ. Chem. Eng. 7(2019) 102793. [46] B. Rahimi, A. Ebrahimi, Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: Optimization by responsesurfacemethodology(RSM), J. Taiwan Inst. Chem. Eng.101(2019)64-79. [47] J. Shu, R. Liu, H. Wu, Z. Liu, X. Sun, C. Tao, Adsorption of methylene blue on modified electrolytic manganese residue: Kinetics, isotherm, thermodynamics and mechanism analysis, J. Taiwan Inst. Chem. Eng. 82(2018) 351-359. [48] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38(1916) 2221-2295. [49] H. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem. 57(1907) 385-470. [50] C. Pearce, J. Lloyd, J. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: A review, Dyes Pigm. 58(2003) 179-196. [51] M. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS 12(1940) 327-356. [52] A. Özer, G. Akkaya, M. Turabik, Biosorption of Acid Red 274(AR 274) on Enteromorpha prolifera in a batch system, J. Hazard. Mater. 126(2005) 119-127. [53] K. Tan, B. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74(2017) 25-48. [54] S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar 24(1898) 1-39. [55] Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34(1999) 451-465. [56] C. Aharoni, F. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Advances in Catalysis, 21(1970) 1-49. [57] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, Sanit. Eng. Div. 89(1963) 31-60. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[3] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[4] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[5] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[6] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290. |
[7] | Chi-Hui Tsou, Rui Zeng, Neng Wan, Manuel Reyes De Guzman, Xue-Fei Hu, Tao Yang, Chen Gao, Xiaomei Wei, Jia Yi, Li Lan, Rui-Tao Yang, Ya-Li Sun. Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 118-131. |
[8] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[9] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[10] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 314-324. |
[11] | Hongzhi Zhang, Huiyan Guo, Yang Liu, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 240-247. |
[12] | Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263. |
[13] | Miaomiao Zhao, Degang Ma, Yu Ye. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 272-279. |
[14] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[15] | Najma Kamali, Jahan B. Ghasemi, Ghodsi Mohammadi Ziarani, Sahar Moradian, Alireza Badiei. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 374-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||