[1] G.Q. Guan, Clean coal technologies in Japan:A review, Chin. J. Chem. Eng. 25(6) (2017) 689-697. [2] M. Kawabata, O. Kurata, N. Iki, H. Furutani, A. Tsutsumi, Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation-Technical challenges for future generations, J. Power Technol. 92(2012) 90-100. [3] C. Fushimi, G.Q. Guan, Advanced integrated coal gasification combined cycle:Current status of development, Encyclopediaof Sustainable Technologies, Elsevier, Amsterdam, 2017. [4] C. Fushimi, W.N. Dewi, Energy efficiency and capital cost estimation of superheated steam drying processes combined with integrated coal gasification combined cycle, J. Chem. Eng. Jpn. 48(10) (2015) 872-880. [5] R. Hoya, C. Fushimi, Thermal efficiency of advanced integrated coal gasification combined cycle power generation systems with low-temperature gasifier, gas cleaning and CO2 capturing units, Fuel Process. Technol. 164(2017) 80-91. [6] W.H. Lian, J.X. Yang, P. Li, J.L. Wang, Z.L. Zhang, C. Fushimi, X.G. Hao, W. Huang, G.Q. Guan, Numerical simulation of hydrodynamic behaviors in a novel gas-solids conical downer, Powder Technol. 336(2018) 573-583. [7] Z.K. Zhao, J.X. Yang, W. Zhang, P. Li, W.H. Lian, Z.L. Zhang, Y.M. Huang, X.G. Hao, C. Fushimi, G.Q. Guan, Hydrodynamic simulation and optimization of the feeding system of a bubbling fluidized-bed gasifier in a triple-bed circulating fluidized bed with high solids flux, Powder Technol. 321(2017) 336-346. [8] C. Fushimi, G.Q. Guan, M. Ishizuka, Y. Nakamura, A. Tsutsumi, Y. Suzuki, E. Wee, C. Lim, Y. Cheng, C.H. Wang, High-flux triple bed circulating fluidized bed (TBCFB) gasifier for exergy recuperative IGCC/IGFC, in:Proceedings of the 10th Intenational Conference on Circulating Fluidized Beds and Fluidization Technology (CFB-10), Bend, USA, 2011. [9] G.Q. Guan, C. Fushimi, A. Tsutsumi, M. Ishizuka, S. Matsuda, H. Hatano, Y. Suzuki, High-density circulating fluidized bed gasifier for advanced IGCC/IGFCAdvantages and challenges, Particuology 8(6) (2010) 602-606. [10] G.Q. Guan, C. Fushimi, M. Ishizuka, Y. Nakamura, A. Tsutsumi, S. Matsuda, Y. Suzuki, H. Hatano, Y.P. Cheng, E. Wee, C. Lim, C.H. Wang, Flow behaviors in the downer of a large-scale triple-bed combined circulating fluidized bed system with high solids mass fluxes, Chem. Eng. Sci. 66(18) (2011) 4212-4220. [11] A. Tsutsumi, G.Q. Guan, C. Fushimi, Flow behaviors in a high solid flux circulating fluidized bed composed of a riser, a downer and a bubbling fluidized bed, in:Proceedings of the Fluidization XIII, Gyeong-ju, Korea, (2010) 407-414. [12] C.G. Zhou, C. Rosén, K. Engvall, Fragmentation of dolomite bed material at elevated temperature in the presence of H2O&CO2:Implications for fluidized bed gasification, Fuel 260(2020) 116340. [13] J.G. Meng, X.B. Wang, Z.L. Zhao, A.Q. Zheng, Z. Huang, G.Q. Wei, K. Lv, H.B. Li, Highly abrasion resistant thermally fused olivine as in situ catalysts for tar reduction in a circulating fluidized bed biomass gasifier, Bioresour. Technol. 268(2018) 212-220. [14] Y.G. Wang, J.L. Sun, H.Y. Zhang, Z.D. Chen, X.C. Lin, S. Zhang, W.B. Gong, M.H. Fan, In situ catalyzing gas conversion using char as a catalyst/support during brown coal gasification, Energy Fuels 29(3) (2015) 1590-1596. [15] J.Z. Han, X.D. Wang, J.R. Yue, S.Q. Gao, G.W. Xu, Catalytic upgrading of coal pyrolysis tar over char-based catalysts, Fuel Process. Technol. 122(2014) 98-106. [16] Z. Abu El-Rub, E.A. Bramer, G. Brem, Experimental comparison of biomass chars with other catalysts for tar reduction, Fuel 87(10-11) (2008) 2243-2252. [17] T. Sueyasu, T. Oike, A. Mori, S. Kudo, K. Norinaga, J.I. Hayashi, Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassium-loaded woody biomass, Energy Fuels 26(1) (2012) 199-208. [18] X.H. Li, J.S. Ma, L.L. Li, B.F. Li, J. Feng, W. Turmel, W.Y. Li, Semi-coke as solid heat carrier for low-temperature coal tar upgrading, Fuel Process. Technol. 143(2016) 79-85. [19] X.H. Li, B.F. Li, D.Q. Fu, J. Feng, W.Y. Li, The interaction between the char solid heat carrier and the volatiles during low-rank coal pyrolysis, J. Anal. Appl. Pyrolysis 136(2018) 160-168. [20] Y.X. Wang, J.X. Yang, Z.L. Zhang, X.L. Ma, P. Li, X.G. Hao, G.Q. Guan, TBCFB system simulation and optimization for pyrolysis-gasification combustion of low rank coal, CIESC J. 69(8) (2018) 3596-3604. (in Chinese) [21] B. Lv, Z.F. Luo, B. Zhang, X.Z. Qin, Particle mixing and separation performance of gas-solid separation fluidized beds containing binary mixtures, Fuel 226(2018) 462-471. [22] H.L. Lu, Y.H. Zhao, J.M. Ding, D. Gidaspow, W. Li, Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds, Chem. Eng. Sci. 62(1-2) (2007) 301-317. [23] C. Fushimi, G.Q. Guan, Y. Nakamura, M. Ishizuka, A. Tsutsumi, Y. Suzuki, Y.P. Cheng, E.W.C. Lim, C.H. Wang, Mixing behaviors of cold-hot particles in the downer of a triple-bed combined circulating fluidized bed, Powder Technol. 221(2012) 70-79. [24] Y.P. Cheng, W.B. Zhang, G.Q. Guan, C. Fushimi, A. Tsutsumi, C.H. Wang, Numerical studies of solid-solid mixing behaviors in a downer reactor for coal pyrolysis, Powder Technol. 253(2014) 722-732. [25] Q. Geng, X.L. Zhu, Y.X. Liu, Y.B. Liu, C.Y. Li, X.H. You, Gas-solid flow behavior and contact efficiency in a circulating-turbulent fluidized bed, Powder Technol. 245(2013) 134-145. [26] Z. Shu, C.G. Fan, S.G. Li, J.W. Wang, Multifluid modeling of coal pyrolysis in a downer reactor, Ind. Eng. Chem. Res. 55(9) (2016) 2634-2645. [27] B.A. Adesanya, H.N. Pham, Mathematical modelling of devolatilization of large coal particles in a convective environment, Fuel 74(6) (1995) 896-902. [28] J.L. Wang, P. Li, L.T. Liang, J.X. Yang, X.G. Hao, G.Q. Guan, W. Huang, Kinetics modeling of low-rank coal pyrolysis based on a three-Gaussian distributed activation energy model (DAEM) reaction model, Energy Fuels 30(11) (2016) 9693-9702. [29] W.H. Lian, J.L. Wang, G.J. Wang, D.Y. Gao, X. Li, Z.L. Zhang, W. Huang, X.G. Hao, B.L. Hou, Investigation on the lignite pyrolysis reaction kinetics based on the general Arrhenius formula, Fuel 268(2020) 117364. [30] Z. Shu, J.W. Wang, C.G. Fan, S.G. Li, Multifluid modeling of mixing and segregation of binary gas-solid flow in a downer reactor for coal pyrolysis, Ind. Eng. Chem. Res. 53(23) (2014) 9915-9924. [31] Z. Shu, J.W. Wang, Q. Zhou, C.G. Fan, S.G. Li, Evaluation of multifluid model for heat transfer behavior of binary gas-solid flow in a downer reactor, Powder Technol. 281(2015) 34-48. [32] D.F. Pan, X. Qu, J.C. Bi, Effect of gasified semi-coke on coal pyrolysis in the polygeneration of CFB gasification combined with coal pyrolysis, J. Anal. Appl. Pyrolysis 127(2017) 461-467. [33] H.L. Lu, D. Gidaspow, E. Manger, Kinetic theory of fluidized binary granular mixtures, Phys. Rev. E 64(6) (2001) 061301. [34] H.A. Jakobsen, Multiphase Reactive Flows, second ed. in:Chemical Reactor Modeling, Springer, New York, 2014. [35] Z.X. Chao, Y.F. Wang, J.P. Jakobsen, M. Fernandino, H.A. Jakobsen, Derivation and validation of a binary multi-fluid Eulerian model for fluidized beds, Chem. Eng. Sci. 66(16) (2011) 3605-3616. [36] Z.X. Chao, Y.F. Wang, J.P. Jakobsen, M. Fernandino, H.A. Jakobsen, Investigation of the particle-particle drag in a dense binary fluidized bed, Powder Technol. 224(2012) 311-322. [37] G. Peng, P.F. Dong, Z.J. Li, J.W. Wang, W.G. Lin, Eulerian simulation of gas-solid flow in a countercurrent downer, Chem. Eng. J. 230(2013) 406-414. [38] J. Chang, S.Q. Yang, K. Zhang, A particle-to-particle heat transfer model for dense gas-solid fluidized bed of binary mixture, Chem. Eng. Res. Des. 89(7) (2011) 894-903. [39] J. Sun, M.M. Chen, A theoretical analysis of heat transfer due to particle impact, Int. J. Heat Mass Transf. 31(5) (1988) 969-975. [40] F.J. Wang, S. Zhang, Z.D. Chen, C. Liu, Y.G. Wang, Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal, J. Anal. Appl. Pyrolysis 105(2014) 269-275. [41] K. Mahalatkar, J. Kuhlman, E.D. Huckaby, T. O'Brien, CFD simulation of a chemical-looping fuel reactor utilizing solid fuel, Chem. Eng. Sci. 66(16) (2011) 3617-3627. [42] J. Xie, W.Q. Zhong, Y.J. Shao, K.X. Li, Coupling of CFD-DEM and reaction model for 3D fluidized beds, Powder Technol. 353(2019) 72-83. [43] E.H. Liu, X. Liu, M.J. Zhao, H.T. Zheng, J.H. Lu, Z.H. Zhang, Turbulent fuel-air mixing study of jet in crossflow at different velocity ratios using LES, Int. J. Heat Fluid Flow 85(2020) 108633. [44] L.Y. Zhu, Y.P. Fan, C.X. Lu, Mixing of cold and hot particles in a pre-lifting scheme with two strands of catalyst inlets for FCC riser, Powder Technol. 268(2014) 126-138. [45] M.F. Zhou, H. Jiang, Y.J. Hu, Z.M. Lu, H.B. Jiang, C.Z. Li, Evaluation of mixing performance for the industrial-scale radial multiple jets-in-crossflow mixing structure, Chem. Eng. Process.-Process. Intensif. 141(2019) 107534. [46] L.P. Wei, G.D. Jiang, H.P. Teng, J. Hu, J.B. Zhu, Multi-fluid Eulerian simulation of mixing of binary particles in a gas-solid fluidized bed with a cohesive particle-particle drag model, Particuology 49(2020) 95-104. [47] R.J. Liu, Z.Y. Zhou, R. Xiao, A.B. Yu, CFD-DEM modelling of mixing of granular materials in multiple jets fluidized beds, Powder Technol. 361(2020) 315-325. [48] J.X. Zhu, Y. Ma, H. Zhang, Gas-solids contact efficiency in the entrance region of a co-current downflow fluidized bed (downer), Chem. Eng. Res. Des. 77(2) (1999) 151-158. [49] C.X. Wang, J. Zhu, Developments in the understanding of gas-solid contact efficiency in the circulating fluidized bed riser reactor:A review, Chin. J. Chem. Eng. 24(1) (2016) 53-62. |